

Income, Cost, Time, and Convenience of Food: A Series of Rapid Reviews and Evidence Scans

Emily Callahan, MS,^a Marlana Bates, MPH, RD,^b Laural Kelly English, PhD,^b Molly Higgins, MLIS,^c Julia H Kim, PhD, MPH, RD,^b Julie Nevins, PhD,^b Sara Scinto-Madonich, MS^b

Suggested citation: Nutrition Evidence Systematic Review Team. *Income, Cost, Time, and Convenience of Food: A Series of Rapid Reviews and Evidence Scans.* USDA Food Plans Rapid Reviews and Evidence Scans. Alexandria, VA: U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, August 2021. Available at: https://nesr.usda.gov/usda-food-plans-rapid-reviews-and-evidence-scans.

^a Project Lead, NESR team, Nutrition Guidance and Analysis Division (NGAD), Center for Nutrition Policy and Promotion (CNPP), Food and Nutrition Service (FNS), U.S. Department of Agriculture (USDA)

^b Analyst, NESR team; Panum Group, under contract with the FNS, USDA

^c Librarian, NESR team; Panum Group, under contract with the FNS, USDA

The contents of this document may be used and reprinted without permission. Endorsements by NESR, CNPP, FNS, or USDA of derivative products developed from this work may not be stated or implied.

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons using assistive technology should be able to access information in this report. For further assistance please email <u>SM.FN.NESR@USDA.gov</u>.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

Table of contents

Table of contents	3
Introduction	7
Project methods	7
Develop a protocol	8
Develop analytic frameworks	9
Search for, screen, and select literature	9
Developing and implementing the literature search strategy	10
Screen and select studies	12
Conduct manual searches	12
Document the search results	12
Extract data and assess risk of bias	12
Extract data	13
Assess risk of bias	13
Synthesize evidence, assessment of evidence, develop summary statements, and identify research recommendations	14
Synthesize evidence	14
Develop summary statements	14
Identify research recommendations	14
Chapter 1 - What is the relationship between income and prices for food items/baskets?	15
Specific methods to conduct this rapid review	15
Develop a protocol	15
Search for and select studies	18
Extract data and assess the risk of bias	19
Synthesize the evidence	19
Summary statements	19
Recommend future research	19
Results	19
Literature search and screening results	19
Fruits and vegetables	20
Market baskets	24
Dairy	26
Grains	27
Proteins	29
Summary statements and research recommendations	30
Summary statements	30
Research recommendations	30
References of the articles included in the income and price of food rapid review	87
Chapter 2 - What is the relationship between income or Federal Assistance participation/eligibility and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?	89
Specific methods to conduct this rapid review.	
Develop a protocol	
Search for and select studies	

Extract data and assess the risk of bias	93
Synthesize the evidence	93
Summary statements	93
Recommend future research	93
Results	93
Literature search and screening results	93
Description of evidence	94
Synthesis	95
Assessment of evidence	96
Summary statements and research recommendations	97
Summary statements	97
Research recommendations	97
References of the articles included in the income and HEI rapid review	119
Chapter 3 - What is the relationship between overall diet cost and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?	122
Specific methods to conduct this rapid review	122
Develop a protocol	122
Search for and select studies	123
Extract data and assess the risk of bias	124
Synthesize the evidence	125
Summary statements	125
Recommend future research	125
Results	125
Literature search and screening results	125
Description of evidence	126
Synthesis	127
Assessment of evidence	128
Summary statements and research recommendations	129
Summary statements	129
Research recommendations	129
Sensitivity Analysis	129
References of the articles included in the diet cost and HEI rapid review	137
Chapter 4 - What is the relationship between income and time spent on food-at-home-related activities?	138
Specific methods to conduct this rapid review	138
Develop a protocol	138
Search for and select studies	140
Extract data and assess the risk of bias	141
Synthesize the evidence	142
Summary statements	142
Recommend future research	142
Results	142
Literature search and screening results	142
Description of the evidence	143

Synthesis of the evidence	145
Summary statements and research recommendations	
Summary statements	
Research recommendations	
References of the articles included in the income and time spent on food-at-home-related activities rapid review	158
Chapter 5 - What factors influence the purchase and/or consumption of at-home convenience foods? How are these described in the literature?	
Specific methods to conduct this evidence scan	
Develop a protocol	
Search for and select studies	
Extract data	161
Describe the evidence	163
Recommend future research	163
Results	163
Literature search and screening results	163
Description of the evidence	164
Research recommendations	172
References of the articles included in the convenience food evidence scan	173
Acknowledgments and funding	177
Appendices	178
Appendix 0-a: Abbreviations	178
Appendix 0-b: Risk of Bias for Nutrition Observational Studies (ROB-NObS) Tool*	180
Appendix 1-a: Literature search strategy for the rapid review on income and food prices	188
Appendix 1-b: Excluded articles for the rapid review on income and food prices	194
Appendix 2-a: Literature search strategy for the rapid review on income and HEI	214
Appendix 2-b: Excluded articles for the rapid review on income and HEI	219
Appendix 3-a: Literature search strategy for the rapid review on diet cost and HEI	235
Appendix 3-b: Excluded articles for the rapid review on diet cost and HEI	239
Appendix 4-a: Literature search strategy for the rapid review on income and time spent on food-at-home-related activities.	249
Appendix 4-b: Excluded articles for the rapid review on income and time spent on food-at-home-related activities	253
Appendix 5-a: Literature search strategy for the evidence scan on factors that influence the purchase and/or consumption convenience foods	
Appendix 5-b: Excluded articles for the evidence scan on factors that influence the purchase and/or consumption of conve foods	
Table 1-a. Inclusion and exclusion criteria for the rapid review on income and price of food	18
Table 1-b. Evidence examining the relationship between income and price of food	
Table 1-c. Risk of bias for observational studies examining income and food price	
Table 2-a. Inclusion and exclusion criteria for the rapid review on income and HEI	
Table 2-b. Evidence examining the relationship between income and/or Federal assistance participation/eligibility and HEI	
Table 2-c. Risk of bias for observational studies examining income and HEI	
Table 3-a. Inclusion and exclusion criteria for the rapid review on diet cost and HEI	
Table 3-b. Evidence examining the relationship between diet cost and HEI score	

USDA Food Plans Rapid Reviews and Evidence Scans

Table 3-c. Evidence examining the relationship between food expenditures and HEI scores	133
Table 3-d. Risk of bias for the randomized controlled trial examining diet cost or expenditures and HEI	135
Table 3-e. Risk of bias for observational studies examining diet cost or expenditures and HEI	135
Table 4-a. Inclusion and exclusion criteria for the rapid review on income and time spent on food-at-home-related activities	140
Table 4-b. Cross-sectional evidence examining the relationship between income and time spent on food-at-home-related activities	s148
Table 4-c. Cross-sectional evidence examining the relationship between income proxy and time spent on food-at-home-related activities	153
Table 4-d. Risk of bias for observational studies examining income and time spent on food-at-home-related activities	156
Table 5-a. Inclusion and exclusion criteria for the evidence scan on the purchase/consumption of at-home convenience foods	161
Figure 1-a. Analytic frameworkfortherapidreviewonincomeandprice of food	17
Figure 1-b. Literature search and screen flowchart for the rapid review on income and price of food	20
Figure 2-a. Analytic framework for the rapid review on income and HEI	91
Figure 2-b. Literature search and screen flowchart for the rapid review on income and HEI	94
Figure 3-a. Analytic framework for the rapid review on diet cost and HEI.	123
Figure 3-b. Literature search and screen flowchart for the rapid review on diet cost and HEI	126
Figure 4-a. Analytic framework for the rapid review on income and time spent on food-at-home-related activities	139
Figure 4-b. Literature search and screen flowchart for the rapid review on income and time-spent on food-at-home-related activities	es.143
Figure 5-a. Analytic framework for the evidence scan on purchase/consumption of at-home convenience foods	160
Figure 5-b. Literature search and screen flowchart for the evidence scan on purchase/consumption of at-home convenience food	s164
Figure 5-c. Qualitative study factors identified related to the purchase/consumption of at-home convenience foods	166
Figure 5-d. Quantitative study factors examined related to the purchase/consumption of at-home convenience foods	167
Figure 5-e. Ready-to-Eat Food Groups	169
Figure 5-f. Ready-to-Heat Food Groups	170
Figure 5-g. Ready-to-Cook/Ready-to-Bake Food Groups	171
Figure 5 h. Poody to Proper Food Groups	172

Introduction

The U.S. Department of Agriculture (USDA) develops four USDA Food Plans (the Thrifty, Low-Cost, Moderate-Cost, and Liberal Food Plans), each of which shows how a nutritious diet may be achieved at various cost levels. Each Food Plan includes a set of market baskets applicable to 1 of 15 age-sex groups. Each market basket is a selection of foods in purchasable food categories that together can be used in meals that reflect current dietary recommendations.

The Thrifty Food Plan (TFP) serves as the basis for the maximum allotment for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp Program. The 2018 Farm Bill mandated an update to the TFP market baskets by 2022 and every five years thereafter to reflect "current prices, composition data, consumption patterns, and dietary guidance". The importance of updating the TFP was further reiterated in Executive Order 14002 issued by President Joseph R. Biden on January 22, 2021.

To meet this mandate, the <u>Thrifty Food Plan, 2021</u> has been updated using a rigorous scientific process. USDA's Center for Nutrition Policy and Promotion's (CNPP) Nutrition Evidence Systematic Review (NESR) team completed a series of rapid reviews and evidence scans as a source of information to support systematic and rigorous decisions throughout the process.

The staff at NESR specializes in conducting food- and nutrition-related systematic reviews and evidence syntheses. The NESR staff collaborated with USDA's CNPP Nutrition and Economic Analysis Team (NEAT), who conduct the analyses to develop the USDA Food Plans, to complete a series of rapid reviews and evidence scans to address the following research questions:

- 1. Rapid Review: What is the relationship between income and prices for food items/baskets?
- 2. <u>Rapid Review</u>: What is the relationship between income or Federal Assistance participation/eligibility and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?
- 3. <u>Rapid Review</u>: What is the relationship between overall diet cost and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?
- 4. <u>Rapid Review</u>: What is the relationship between income and time spent on food-at-home-related activities?
- 5. <u>Evidence Scan</u>: What factors influence the purchase and/or consumption of at-home convenience foods? How are these foods described in the literature?

The methods for the rapid reviews and evidence scan are detailed below.

Project methods

Herein, we present an overview of the methods specific to the rapid reviews and evidence scans to inform the *Thrifty Food Plan, 2021*, including all deviations or modifications made to <u>NESR standard systematic review</u> methods.

Four rapid reviews were conducted to support the *Thrifty Food Plan*, 2021 project. A rapid review is a type of evidence synthesis project in which the methods of a systematic review are modified or streamlined to produce

results in a timely and cost-effective manner.^a Although systematic review methods are modified to expedite the process, a rapid review is still characterized by rigorous, transparent, and reproducible methods. The methodology utilized for each rapid review is informed by and tailored to the scientific question being answered and the specific needs of the requester (e.g., timeline, purpose, scope, circumstances, and stakeholders) while retaining scientific integrity. Best practices and recommendations from other research and health organizations, including the World Health Organization, Cochrane, the Agency for Healthcare Research and Quality, and the Center for Evidence-Based Medicine at the University of Oxford, inform the process by which NESR conducts rapid reviews.^{a,b,c,d}

Three evidence scans were conducted for the *Thrifty Food Plan, 2021* project. A NESR evidence scan is a systematic and exploratory process used to provide objective data on the volume and characteristics of research available on a topic or question. Evidence scans involve the following: development/refinement of the research question, evidence scan protocol development, search for and screen studies, minimal data extraction, and summarizing study characteristics. NESR evidence scans do not include: 1) data extraction of study results, 2) assessment of risk of bias, 3) synthesis of the evidence, 4) development of conclusion statements, or 5) grading the strength of the evidence. Two of the evidence scans were conducted to inform protocol development for 2 of the rapid reviews and 1 to describe the volume and characteristics of studies available on a topic of interest related to the *Thrifty Food Plan, 2021*.

The process by which NESR developed rigorous *a priori* methods and protocols for this series of rapid reviews and evidence scans, and the type and extent of modifications made to NESR systematic review methods, are transparently documented and described below. Any additional methodological modifications made for individual reviews are acknowledged under their respective sections of the report. The summary statements in this series of rapid reviews should be interpreted in light of these modifications, and noted limitations.

Develop a protocol

For each rapid review question or evidence scan, the NESR team collaborated with the NEAT team to develop a protocol. A rapid review or evidence scan protocol has the same elements as a systematic review protocol, and is a plan for how a specific review will be conducted. The protocol includes:

- Analytic framework
- Literature search and screening plan
 - o Inclusion and exclusion criteria
 - Electronic databases and search terms
- Literature search and screening results

^a Tricco AC, Langlois EV, Straus SE, editors. Rapid reviews to strengthen health policy and systems: a practical guide. Geneva: World Health Organization. 2017. https://apps.who.int/iris/handle/10665/258698.

^bGarritty C, Gartlehner G, Nussbaumer-Streit B, King VJ, Hamel C, Kamel C, Affengruber L, Stevens A. Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. J Clin Epi. 2020;130:13-22.

^c Hartling L, Guise J-M, Kato E, Anderson J, Aronson N, Belinson S, Berliner E, Dryden D, Featherstone R, Foisy M, Mitchell M, Motu'apuaka M, Noorani H, Paynter R, Robinson KA, Schoelles K, Umscheid CA, Whitlock E. EPC Methods: An Exploration of Methods and Context for the Production of Rapid Reviews. Research White Paper. (Prepared by the Scientific Resource Center under Contract No. 290-2012-00004-C.) AHRQ Publication No. 15-EHC008-EF. Rockville, MD: Agency for Healthcare Research and Quality; February 2015. www.effectivehealthcare.ahrq.gov/reports/final.cfm.

^d Plüddemann A, Aronson JK, Onakpoya I, Heneghan C, Mahtani KR. Redefining rapid reviews: a flexible framework for restricted systematic reviews. BMJ Evid Based Med. 2018;23(6):201-203. doi:10.1136/bmjebm-2018-110990

- Flow chart of literature search and screening results
- List of included articles
- List of excluded articles, with rationale

The protocols were established before any evidence was reviewed and synthesized. This allowed the establishment of protocols that would capture the most appropriate, relevant, and direct body of evidence to answer each question. Any revisions to protocols that occurred after the start of a specific review were documented and are noted in the below report.

A description of NESR's methodology for developing an analytic framework is below. NESR's methodology for developing inclusion and exclusion criteria and the search strategy, as well as processes related to screening and selecting studies for inclusion in a review, is described, below, in "Search for, screen, and select literature."

Develop analytic frameworks

Analytic frameworks were developed for each rapid review and evidence scan question. An analytic framework defines the core elements of the review question, includes definitions for key terms, identifies key confounders and other factors that could affect the relationships examined, and helps to ensure that important contributing elements in the causal chain will be examined and evaluated. The analytic framework serves as the foundation for the rest of the review process, and informs the inclusion/exclusion criteria and literature search strategy. data extraction and risk of bias assessments, and the strategy for synthesizing the evidence to develop summary statements.

A standard framework, called the PICO framework, was used to define core elements of each review question. The elements of the PICO framework are the Population (for both the intervention/exposure and for the outcome), Intervention and/or exposure, Comparator (i.e., the alternative being compared to the intervention or exposure), and Outcomes. Key terms, key confounders, and other factors to be considered (i.e., mediators, moderators, covariates) were also identified and included in the analytic framework where appropriate. Key confounders are considered during review and evaluation of the evidence, particularly during risk of bias assessment (see "Assess risk of bias," below) and evidence synthesis.

Search for, screen, and select literature

Systematic searching, screening, and selecting the scientific literature is a process through which NESR sought to identify the most complete and relevant body of evidence to answer the rapid review and evidence scan questions. The process started with defining inclusion and exclusion criteria a priori, followed by developing and implementing literature search strategies, and finally screening and identifying search results. The entire process was documented, including a complete list of articles that met criteria for inclusion in each rapid review or scan, and a list of excluded articles, with the rationale for exclusion.

Define inclusion and exclusion criteria

Inclusion and exclusion criteria provide an objective, consistent, and transparent framework for determining which articles to include in each review. These criteria were developed before any studies were reviewed to guide selection of the most relevant and appropriate body of evidence for each review question. Additionally, these criteria were framed to increase the utility for Thrifty Food Plan, 2021. To minimize bias, revisions to the criteria after studies had been reviewed were discouraged. Any revisions to the criteria that occurred after studies were reviewed are documented in the individual reviews in this report.

NESR analysts worked jointly with the NEAT staff to establish inclusion and exclusion criteria that were tailored to the specific review question addressed.

Criteria were established for a number of study characteristics, and although criteria were tailored to the unique characteristics of each review question being addressed, NESR also applied several standard criteria across this project. Deviations from the standard criteria that were appropriate for individual questions are documented in the report section for that question. The following is a description of criteria applied across this project:

- Study Design: Any study design that was not a narrative review, systematic review, or meta-analysis was included.
- Language: Articles published in English were included. Articles published in languages other than English were excluded.
- Publication status: Articles that had been peer-reviewed or grey literature in the form of reports that had not been peer reviewed, but were available from government and nongovernmental organizations were included.
- Publication date and data years: Studies published between January 2008 to present and had data collected inclusive of 2008 (e.g., 2000-2012; 2008-2009) were included. Articles published before January 2008 or articles with data collected prior to 2008 (e.g., 2000-2007; 1999-2005), regardless of publication date, were excluded. NESR and NEAT chose 2008 because of national and policy-relevant changes. The Food, Conservation, Energy Act of 2008 (which was a continuation of the 2002 Farm Bill that restored food and nutrition program eligibility of legal immigrants) increased benefits and eligibility for the Food Stamp Program (FSP), and increased funding and eligibility for free/reduced-price lunch and other food-assistance programs. In 2009, the FSP was renamed to the Supplemental Nutrition Assistance Program (SNAP). Therefore, the NEAT and NESR teams determined that the preponderance of the evidence most relevant to factors such as income, price, cost and Federal assistance would be captured by searching literature starting in the year 2008. For consistency, a starting date of 2008 was selected for multiple questions addressed in this project.
- Country: Studies were only included if they were conducted in the U.S.
- Study participants: Human participants/populations were included and all non-human participants (i.e., animal studies, in-vitro) were excluded.

Developing and implementing the literature search strategy

Once the inclusion and exclusion criteria were set, the NESR librarian used the analytic framework and inclusion/exclusion criteria to guide development of a comprehensive literature search strategy. The literature search strategy included selecting and using the appropriate bibliographic databases (e.g., PubMed/MEDLINE, Business Source Premier, Web of Science), identifying search terms appropriate for the databases being searched, and employing search refinements, such as search filters. The librarian worked in collaboration with NESR staff to construct a preliminary search strategy using PubMed operators and search terms. This was used to conduct a test search, preview the results, and correct any syntax, spelling, or grammatical errors. The search strategy underwent multiple revisions to refine and adjust the search before it was finalized for use. The search strategies are included in this report for all rapid reviews completed. Unlike NESR systematic reviews, the search strategies for these rapid reviews were not peer-reviewed by a 2nd librarian as a time-savings concession.

Literature search strategies for rapid reviews and evidence scans are developed with the same methods and were specific to each question. Evidence scans generally have broader questions and therefore broader search strategies. For the 2 questions where an evidence scan was conducted to inform the rapid review, the evidence scan confirmed that the scope of the question was adequate and the same search that was run for the evidence scan was used for the rapid review.

Identify bibliographic databases

The NESR librarian selected electronic bibliographic databases based on the systematic review topic. A team of staff at Economic Research Service consulted on appropriate databases on the topic of income and prices of food/food baskets, including a grey literature approach. This insight was applied across the project for additional questions and topics. PubMed/MEDLINE, Business Source Premier, Web of Science were the primary databases used for the project, and AgEcon, Google Scholar, and Google were used for the grey literature search.

Develop search terms and apply search filters

NESR analysts helped identify initial key terms and/or relevant articles to ensure that the NESR librarian had an understanding of the scope and intent of the systematic review question. The librarian was responsible for checking each bibliographic database's search features to ensure that all related search terms for a particular review question were captured.

For this project, filters that were used include: English language, human studies, date, study design, and publication type (e.g., to filter out news, editorials, and comments).

Implement the literature search strategy

After finalizing the search strategies for each of the databases, the NESR librarian began the process of conducting all of the electronic searches. When searching multiple databases, overlap in the literature identified is common; the librarian electronically eliminated duplicate records at the search level using a citation management program (EndNote X9; Clarivate Analytics, Philadelphia, PA). Additional duplicates were identified by NESR analysts during the course of screening, and were removed from the search results. In addition, because some journals publish articles electronically, in advance of the print journal, the search captured these articles, and they were eligible for inclusion in the review, even though there was a possibility that they would be assigned an official publication date outside the window of the search date range.

In addition to the peer-reviewed primary studies retrieved from major biomedical databases, a complementary search of the grey literature was conducted in order to ensure that published and unpublished studies and reports relevant to the research questions were included in the search process. The grey literature search strategy included a broad search using similar key terms. More information about the sources selected and the searches conducted are included in each individual review. To determine which results to select for screening, the librarian limited the export of results to n pages where n= [pages with relevant results]+1. Relevant results were determined by the result's title.

Once the electronic searches were done, the librarian documented the total number of unique articles identified, indicating how many were identified from each database searched. This documentation included the total, raw search results, as well as search results after removal of duplicates.

Screen and select studies

The screening of search results was facilitated by the use of a web-based tool (i.e., DistillerSR) and screening forms that were developed based on the inclusion and exclusion criteria identified for each systemic review. For the rapid reviews and evidence scan included in this project, generally, 1 NESR analyst screened 100% of records and a 2nd analyst screened 20% of records. In some cases, 1 analyst screened 100% of records, and a 2nd analyst verified the decisions. A re-ranking function was utilized in DistillerSR to reorder the most relevant articles first. The goal of screening was to review the search results and exclude those that did not meet the inclusion criteria. Screening was generally completed at 3 levels. The first level of screening was completed using only the title of each article. If an article was not excluded at this level, it moved forward to the 2nd level, where the abstract was screened. Finally, if an article passed the first 2 levels, it moved to the third level, where the full text of the article was screened. In this project, title and abstract screening were sometimes combined into 1 level. Any disagreements between analysts were reconciled between the 2 screenings. If necessary, a third analyst was consulted to resolve differences. These screening distinctions are noted in each individual review section of this report.

If multiple articles were identified that presented effectively the same data from the same study or cohort, the article that most directly addressed the review question was included to avoid duplicative data. However, if the articles addressed unique data related to the question, or were needed to comprehensively present information from a study or cohort, then all articles were included. Included articles from the same study or cohort were noted in the review, and this was taken in consideration when weighing the amount of evidence to answer a question.

Screening for rapid reviews and evidence scans for this project used consistent methods in order to ensure that the screening completed for the scan could also be applied to the rapid review. In cases where the focus of the rapid review question was narrowed after the evidence scan, additional screening was completed to exclude any studies that would no longer be included when the rapid review protocol elements were applied to the body of evidence.

Conduct manual searches

NESR analysts also completed manual searches on the rapid reviews in this project. Manual searching was done to find articles not identified through the electronic database search. This was typically due to inadequate indexing or filtering limitations of a database. The primary approach used for the manual search was hand searching, in which an analyst systematically searched the reference sections of included articles and related systematic reviews and meta-analyses. Potential articles also may have been suggested by others engaged in the process. Any identified citations were then screened for inclusion or exclusion as outlined above.

Document the search results

After the electronic and manual searches were completed, NESR analysts and the librarian documented the literature search and screening results by compiling lists of the included and excluded citations, along with the rationale for exclusion at the full-text level.

Extract data and assess risk of bias

NESR analysts extracted and summarized data from each included article to objectively describe the body of evidence available to answer a rapid review question or inform an evidence scan. For rapid reviews, NESR analysts assessed the risk of bias for each included article. Risk of bias assessments were not completed for

evidence scans. The extracted data and assessment of risk of bias were used to populate evidence tables to present the key data used in the synthesis for the review.

Extract data

To expedite data extraction, only the most essential data for answering the question were extracted. For the rapid reviews, information on the following elements were generally extracted: Study design, analytic N, geographic location and/or population description, intervention/exposure, outcomes, results, key confounders, and data source. For evidence scans, only minimal descriptive information was extracted, and no results were included.

Once the types of data to be extracted were determined, a data extraction form was developed and used to facilitate accurate, consistent, and efficient data extraction. This form ensured that the same information from each article was formatted consistently, which made the content easier to compare and contrast during synthesis. NESR analysts used DistillerSR to extract data.

One NESR analyst extracted data from each included article using the data extraction form. In some cases, the required data were not reported in the article. In those situations, the data were recorded as "not reported." However, if the required data were reported in an article's protocol or related publication, the analyst extracted the data and noted the publication from which it was extracted. Next, a 2nd analyst reviewed only the extracted results for completeness, accuracy, and consistent presentation and formatting. Evidence tables were created by NESR analysts using the extracted data.

Assess risk of bias

Each article included in a rapid review underwent a formal risk of bias assessment. Risk of bias assessments were not completed for evidence scans. Risk of bias is the likelihood of a systematic error or deviation from the truth, in results or interferences, which can lead to underestimation or overestimation of either the true effect of an intervention on an outcome or the true association between an exposure and outcome.

NESR assessed the risk of bias of RCTs, including parallel group trials, cluster-randomized trials, and crossover trials, using the "Cochrane risk-of-bias tool for randomized trials" (RoB 2.0; August 2016 version). NESR assessed the risk of bias of non-RCTs using the "Risk of Bias in Non-randomized Studies. NESR assessed the risk of bias of observational studies using the Risk of Bias for Nutrition Observational Studies tool (RoB-NObs) (**Appendix 0-b**).

For each article included in a rapid review, 1 NESR analyst completed the risk of bias tool appropriate for the study's design and the assessment was verified by a 2nd analyst. Analysts answered the signaling questions based only on the data that was extracted for the rapid review for a specific result, and determined domain-level risk of bias judgements (e.g., Low, Moderate, Serious, Critical). If necessary, analysts referred to previous and/or related publications to obtain information to complete items in the tool. The analysts' reconciled disagreements and if a disagreement could not be resolved by the 2 analysts, an additional member of the NESR staff was asked to provide a third-party consultation.

^a Higgins JPT, Sterne JAC, Savović J, et al. A revised tool for assessing risk of bias in randomized trials. In: Chandler J, Clarke M, McKenzie J, Boutron I, Welch V, eds. Cochrane Methods. Vol 10(Suppl 1): Cochrane Database of Syst Rev.; 2016. doi: 10.1002/14651858.CD201601.

^b Sterne JAC, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in nonrandomised studies of interventions. BMJ. 2016;355:i4919. doi:10.1136/bmj.i4919.

The results of each risk of bias assessment were displayed in a risk of bias table. This table provides transparency to the domain-level risk of bias judgements for each included article using a color-coded system. Limitations identified during risk of bias assessments were also described and considered.

Synthesize evidence, assessment of evidence, develop summary statements, and identify research recommendations

Synthesize evidence

Evidence synthesis was conducted for each rapid review, which is the process by which evidence from multiple studies is described, compared and contrasted, and combined qualitatively, or narratively, to answer the review question. This synthesis of the body of evidence involves identifying overarching themes or key concepts from the findings, identifying and explaining similarities and differences between studies, and determining whether certain factors may have affected the relationships being examined. Evidence synthesis conducted as part of the rapid reviews in this project align with that of NESR systematic reviews, but are more concise.

NESR analysts drafted a description of the studies included in the review to begin the process of synthesizing the evidence using the analytic framework and review protocol to guide how the evidence was organized and described.

Next, NESR analysts reviewed the included articles individually, and the body of evidence collectively. The following were considered in each review: study design, key associations between the intervention/exposure and outcome(s) of interest in the review question, along with considerations of key factors for assessing the body of evidence (risk of bias, consistency, directness, precision, and generalizability). Patterns of agreement and disagreement among the findings were examined, and methodological differences between the studies were assessed to potentially help explain disagreement. Gaps in the body of evidence also were identified.

Synthesis, assessment of evidence, and developing summary statements were not completed for evidence scans because no results were extracted nor was risk of bias assessed. However, research recommendations were developed based on the type and amount of literature included in the scan.

Develop summary statements

NESR analysts developed summary statements outlining the main themes from the synthesis. Because modifications were made to NESR's standard systematic review methods and these reviews included limited expert involvement, conclusion statements and grades were not developed to answer the research questions. However, the grading elements (i.e., risk of bias, consistency, precision, directness, generalizability) were referenced to assess the evidence, determine limitations, and inform the development of summary statements.

Identify research recommendations

Research gaps and methodological limitations identified during data extraction, synthesis, and discussions with the NEAT team are documented and included in this report for each question. They are framed as research recommendations that detail areas where further research is needed to strengthen the body of evidence on the research question of interest.

Chapter 1 - What is the relationship between income and prices for food items/baskets?

Julie Nevins, PhD,^a Julia H Kim, PhD, MPH, RD,^a Molly Higgins, MLIS,^b Marlana Bates, MPH, RD,^a Laural Kelly English, PhD,^a Sara Scinto-Madonich, MS,^a Emily Callahan, MS^c

Specific methods to conduct this rapid review

Develop a protocol

The research question, "What is the relationship between income and the price of food items/baskets?", was answered using a rapid review that was informed by an evidence scan.

The analytic framework for the rapid review examining the relationship between income and prices for food items/baskets is presented in **Figure 1-a**. This analytic framework visually represents the overall scope of the rapid review question and depicts the contributing elements that were examined and evaluated. The intervention or exposure of interest is income (e.g., household, city, regional income) and socioeconomic and geographic proxies for income in U.S. households or populations. The comparators are different levels/categories of income or socioeconomic factor proxy or different geographic areas. The outcomes are the difference in prices of similar food items/baskets of similar items (e.g., jar of spaghetti sauce, unit of banana) in U.S. households or populations. The key confounders are seasonal differences, urban versus rural areas, and cultural/racial diversity or disparities. The other factors to be considered are cultural food choices and neighborhood characteristics (access to healthy foods/distance to store/access to car/type of store). The confounders and other factors to be considered may impact the relationships of interest.

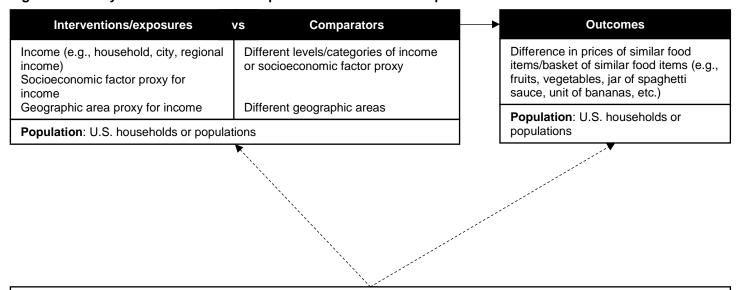
An evidence scan was conducted before the rapid review, and it included any paper that described socioeconomic status (SES) or geographic region for the intervention/exposure. The evidence scan also included education, time (e.g., cooking time), and neighborhood characteristics as key confounders. Based on the evidence scan, the following updates were made to the analytic framework for the rapid review:

- SES and geographic region had to relate directly to income to meet the inclusion criteria for the intervention/exposure.
- Because education is so closely linked to SES, and often included in indices of SES, it was not included
 as a key confounder in the present rapid review.
- While time (e.g., cooking time) may relate to income and/or food price, it was addressed in a separate
 rapid review presented in . Therefore, time was not included as a key confounder in the present rapid
 review.
- Neighborhood characteristics, including access to foods, were determined to relate to income and/or
 food price, but were beyond the scope of the present rapid review. Therefore, neighborhood
 characteristics were not included as a key confounder in the present rapid review.

^a Analyst, NESR team; Panum Group, under contract with the FNS, USDA

^b Librarian, NESR team; Panum Group, under contract with the FNS, USDA

^c Project Lead, NESR team, NGAD, CNPP, FNS, USDA



Further clarifications were made for the rapid review based on the evidence scan, although this did not change the analytic framework or inclusion/exclusion criteria:

- The price of alcoholic beverages does not meet the outcome criterion of "food price" because SNAP funds cannot be spent on alcohol.
- The Nutrition Environment Measures Survey in stores (NEMS-S) tool did not meet the outcome criteria because the price subscore compares price of "regular" foods versus healthy alternatives but does not include food prices.

Figure 1-a. Analytic Framework for the rapid review on income and price of food

Key confounders: Seasonal differences; Urban vs. Rural; Cultural/racial diversity or disparities Other factors to be considered: Cultural food choices; Neighborhood characteristics (Access to food/distance to stores/access to car/type of store)

Key definitions

Low income: before-tax income at or below 130 percent of the U.S. poverty guidelines Higher income: before-tax income above 130 percent of the U.S. poverty guidelines

Legend Relationship(s) of interest Factors that may

impact the relationship(s) of interest

Search for and select studies

NESR analysts worked jointly with NEAT staff to establish the final inclusion and exclusion criteria, which are detailed in Table 1-a.

Table 1-a. Inclusion and exclusion criteria for the rapid review on income and price of food

Category	Inclusion Criteria	Exclusion Criteria
Study design	Any study design that is not a narrative review, systematic review, or meta-analysis	Narrative reviewsSystematic reviewsMeta-analyses
Intervention/ exposure	Income (e.g., household, city, regional income); socioeconomic factor proxy for income (e.g., education); geographic area proxy for income	Socioeconomic factors or geographic areas that are not a direct proxy for income determined by the author
Comparator	 Different levels or categories of income or SES factor proxy for income Higher vs. lower geographic areas 	 N/A Comparison of geographic areas without a proxy for income
Outcomes	 Difference in price of similar food item/basket of similar food items (food items include food item or food category) Difference in price of basket of similar food items 	Total food/grocery expenditures
Publication date	 Published January 1995 – February 2021 with data from January 1995 – February 2021 	Before January 1995, after February 2021Data prior to January 1995
Publication status	 Articles that have been peer-reviewed Grey literature: reports that have not been peer-reviewed but are reports available from government and nongovernmental organizations (e.g., National Bureau of Economic Research) 	 Articles that have not been peer-reviewed and are not published in peer-reviewed journals, other than reports from government and nongovernmental organizations
Language	Articles published in English	Articles published in languages other than English
Country	Studies conducted in the U.S.	Studies conducted outside the U.S.
Study participants	Human participants	Non-human participants (e.g., animal studies, invitro models)

The final search terms for all databases as well as documentation included in the total, raw search results from each database, as well as search results after removal of duplicates are included in Appendix 1-a. Literature search strategy.

The following outlines any departures from the screen and select studies project methods for this specific rapid review.

Screening was done at 2 levels. The first level of screening was done using only the title and abstract of each article. If an article was not excluded, it moved forward to the 2nd level, where the full text of the

article was screened. After NESR analysts completed screening of both levels, the analysts reconciled any discrepancies between the 2 screenings for the 20 percent of articles which were dual screened. If necessary, a third analyst was consulted to resolve differences.

 Based on the literature, NESR analysts updated the analytic framework to include "type of store" as a commonly-reported measure of the other factor to be considered, "access to healthy foods."

The compiled list of the included citations, can be found in the **References** section.

Extract data and assess the risk of bias

NESR analysts extracted and summarized data from each included article to objectively describe the body of evidence available to answer a rapid review question or inform an evidence scan. The following outlines any departures from the project methods for this specific rapid review:

- Data extraction by single analyst, with quality control conducted by a 2nd analyst. Reconciliation was completed as needed
- Data extracted in Distiller, including author, year of data collection and data source for exposure and outcome, study design, analytic N, geographic location, population description, intervention/exposure and comparator descriptions, outcome description, results, key confounders
- Standard NESR risk of bias forms used in Distiller (dual, independent risk of bias)

Synthesize the evidence

Evidence synthesis was completed by describing the evidence and evaluating the included studies individually and collectively as previously described in the project methods.

Summary statements

NESR analysts formed summary statements, as previously described in the project methods, outlining the themes observed during the data synthesis of studies examining income and price of food.

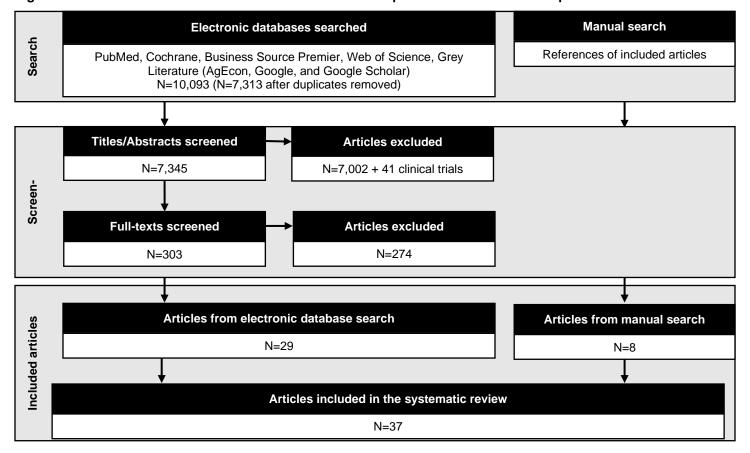
Recommend future research

Recommendations for future research evaluating the relationship between income and the price of food were determined based on the gaps and limitations observed during data extraction and synthesis, as previously described in the project methods. Future work addressing these gaps and limitations may contribute to the body of evidence available to answer this research question.

Results

Literature search and screening results

The literature search yielded 7,313 search results after the removal of duplicates (**see Figure 1-b**). Dual-screening resulted in the exclusion of 7,043 titles/abstracts and 274 full-texts articles. Reasons for full-text exclusion are in **Appendix 1-b**. Eight additional articles were identified from the manual search. The body of evidence included 37 articles from 32 studies (31 cross-sectional studies¹⁻³⁶ and 1 prospective cohort study³⁷). The included articles are listed in **Table 1-b**.


Evidence was provided for each food group, and most studies evaluated price data from multiple food groups:

- Fruits and Vegetables: 23 studies 1-5,7,9,12-19,22,23,25,27,29,30,32,33,35,36
- Market Baskets: 11 studies^{2,6,8,9,11,18,20,22-24,27,34,37}
- <u>Dairy:</u> 11 studies^{1,7,10,14,18,22,23,26,27,29-32}
- Grains: 8 studies^{1,7,14,18,22,23,29,30,32}
- Proteins: 2 studies^{14,23}

Studies also reported prices of beverages (e.g., energy drinks, sports drinks, ready-to-drink tea and coffee), salty snacks, and sweets (e.g., sugar-sweetened beverages, ice cream), but were not specifically examined in this rapid review.

Figure 1-b. Literature search and screen flowchart for the rapid review on income and price of food

Fruits and vegetables

Description of the evidence

Population

Twenty-three cross-sectional studies reported fruit and/or vegetable outcomes as individual foods or food group(s), including 19 studies examining price in stores^{1-3,7,9,12,13,15,16,18,19,22,23,25,27,29,30,32,35,36} (N=6¹ to 1953²⁷ stores), and 4 examining prices purchased by households^{4,5,14,17,33} (N=90¹7 to 43,000¹4 households). The body

of evidence included samples from across the U.S. and 3 household studies had nationally representative samples. ^{4,5,14,33} Five studies that examined prices in stores included small or convenience stores. ^{7,13,15,32,35}

Thirteen of the studies^{3,7,9,12,15,16,18,19,22,23,30,32,35,36} examined the price of fruit alone as individual foods or food group(s) in stores. No studies examined the price of fruit alone in households.

Twelve of the studies 1,3,9,12,13,16,18,19,22,30,32,35,36 reported the price of vegetables alone as individual foods or food group(s) in stores and two 14,33 in households.

Intervention/exposure

Thirteen studies^{1,4,5,9,13-18,22,23,29,33,36} measured income, 7 studies^{2,3,7,19,25,30,32} measured geographic location as a proxy for income, and 3 studies^{12,26,27,35} measured a socioeconomic proxy for income.

Of the 13 studies of fruit, 6 studies^{9,15,16,18,22,23,36} measured income, 5 studies^{3,7,19,30,32} measured geographic proxies of income, and 2 studies^{12,35} measured socioeconomic proxies of income.

Of the 14 studies of vegetables, 8 studies^{1,9,13,14,16,18,22,33,36} measured income, 4 studies^{3,19,30,32} measured geographic proxies of income, and 2 studies^{12,35} measured socioeconomic proxies of income.

Outcome

Outcomes included prices of fruit (apples, bananas, berries, fruit juice, grapefruit, grapes, lemons, limes, mangoes, melons, oranges, peaches, pears, pineapple, plums, strawberries, total fruit), prices of vegetables (asparagus, avocados, beans, broccoli, cabbage, carrots, cauliflower, celery, corn, cruciferous vegetables, cucumbers, eggplant, green beans, greens, lettuce, mushrooms, okra, onions, peppers, potatoes, squash, tomatoes, frozen vegetables, total vegetables), prices of fruits and vegetables combined, and prices of produce.

Synthesis of the evidence

Higher income related to higher prices of fruits and vegetables

Among the studies of income and prices paid by households, 3 studies^{4,17,33} of households found a statistically significant relationship between income and price of fruits and vegetables: households with higher incomes tended to pay higher prices for fruits and vegetables compared to households with lower incomes. The effect size ranged from less than 1 cent price index difference between poverty groups to 2 to 3 cents per ounce or cup.

Of the 19 studies examining prices of fruits and vegetables in stores, 14 studies \$^{1,3,7,9,12,13,16,22,23,25,27,32,35,36}\$ found a statistically significant relationship between income and price: prices of fruits and vegetables were higher in stores located in neighborhoods with higher incomes compared to stores located in neighborhoods with lower incomes. The evidence included samples from states across the U.S. and 4 studies in stores explicitly included small or convenience stores. Two studies \$^{12,32}\$ were relatively small (less than 50 stores) and had critical ratings for risk of bias due to exposure classification (**Table 1-c**); thus the studies could not provide useful information on the relationship between income and price.

Seven studies that examined prices in stores^{3,7,9,12,22,23,32} (N = 25⁹ to 65 stores⁷) reported a statistically significant relationship between income and the prices of fruits alone: prices were higher in stores located in neighborhoods with higher incomes compared to stores located in neighborhoods with lower incomes. All but 1 study³² included groceries or supermarkets and 2 studies^{7,32} included convenience stores. Stores were located in the southern and eastern U.S.

One³³ of the two studies of income and prices paid by households for vegetables found statistically significant relationship, such that households with higher incomes paid higher prices for vegetables compared to households with lower incomes. The study was nationally representative and included 7,143 households. Eight studies in stores 1,9,12,13,16,32,35,36 (N = 6^1 to 364 stores 36) reported a statistically significant finding that stores in higher income neighborhoods had higher vegetable prices than stores in lower income neighborhoods. Three studies^{13,32,35} included convenience stores, and all others included groceries or supermarkets. Stores were primarily located in New York and in the southern and midwestern U.S.

Higher income related to lower prices of fruits and vegetables

One study of households⁵ found a small, but statistically significant, relationship between income and price of fruits and vegetables: households with higher incomes paid lower prices for fruits and vegetables.

Five studies^{12,16,19,30,35} found a statistically significant relationship between income and price of fruits and vegetables in stores. Stores located in neighborhoods with higher incomes had lower prices of fruits and vegetables than stores located in neighborhoods with lower incomes. One study¹⁹ took place exclusively in low-income neighborhoods and another³⁵ included only small or non-traditional stores. Two studies^{12,19} had critical ratings for risk of bias due to exposure classification (Table 1-c) and thus could not provide useful information on the relationship between income and price.

Two studies in stores ($N = 32^{30}$ to 1,474 stores¹⁹) reported a statistically significant relationship between income and the prices of fruits alone, such that stores in higher income neighborhoods had lower fruit prices than stores in lower income neighborhoods. Additionally, four studies in stores ($N = 23^{16}$ to 1,474 stores¹⁹) reported a statistically significant finding that stores in higher income neighborhoods had lower prices of vegetables compared to stores in lower income neighborhoods. Store types were mixed and were located in California, New York, and Texas.

Non-significant associations between income and prices of fruits and vegetables

Two studies^{4,14} found no relationship between income and the price households paid for fruits and vegetables among adolescents (not children)⁴ or for dried beans/peas.¹⁴

Fifteen studies^{2,3,7,9,12,13,15,16,18,19,22,29,30,32,35,36} found no relationship between income and the price of fruits and vegetables in stores. Although none of the studies were nationally representative, results overall cover much of the country. Six studies^{2,7,13,15,32,35} included convenience or small stores explicitly. Three studies^{12,19,32} had critical ratings for risk of bias due to exposure classification (Table 1c) and thus could not provide useful information on the relationship between income and price.

Nine studies in stores 7,12,15,16,18,30,32,35,36 (N = 23^{16} to 364 stores 36) found no relationship between income and the prices of fruits alone. Four studies^{7,15,32,35} included small or convenience stores. Stores were located in the southern and eastern U.S.

One¹⁴ of the two studies of income and prices paid by households for vegetables found no relationship. The study was nationally representative and included 43,000 households. Seven studies in stores^{3,13,16,18,19,22,30,35} (N = 23¹⁶ to 1,474 stores¹⁹) reported no relationship between income and the prices of vegetables alone. Two studies^{13,35} included convenience stores, and overall the studies were distributed across the U.S.

Assessment of the evidence

Risk of bias

The body of evidence was comprised of cross-sectional studies, with moderate to serious concerns of risk of bias. While the studies generally had low risk of bias related to selection of participants into the study, deviations from intended exposures, and measurement of the outcomes, other domains had generally higher risk of bias. The major concerns are listed below, which limited the ability to draw clear summary statements:

- Most of the studies^{1-5,7,9,12,14-19,22,23,25,27,29,30,32,33,35,36} did not account for all key confounders, resulting in a serious risk of bias.
- The studies of stores had risk of bias related to the exposure classification because each study examined the exposure of income levels of neighborhoods near the stores, but could not provide evidence that residents of those neighborhoods in fact shopped at the study stores and thus may not have faced the food prices in those stores. The risk of bias was critical in 3 studies^{12,19,32}.
- Concerns emerged regarding risk of bias due to potential selection of reported results because none of
 the studies had pre-registered data analysis plans. However, given that the reported domains were
 generally consistent with reported methods and that most of the studies reported at least 1 nonstatistically significant result, the risk was judged to be moderate.
- Several studies^{12,15,25,29,30,32,35} had missing data that differed between exposure groups, often due to a lack of availability of certain foods or food groups in 1 exposure group, resulting in risk of bias due to missing data. Another 3 studies^{1,14,33} did not provide sufficient information to evaluate risk of bias due to missing data.

Consistency

Results were inconsistent for the relationship between income and the price of fruits, vegetables, and fruits and vegetables combined, but overall suggest a direct relationship. Results were less clear when examining individual foods, but this may be due to the variety of individual foods examined which did not necessarily overlap across studies. Within studies of households or stores, the methods were generally similar across studies.

Some studies noted that access to larger stores and/or purchasing behaviors explained prices more than income; more of the studies that adjusted for key confounders and store type/access seemed to find no relationship between income and price.

Precision

There was an adequate number of studies to investigate the relationship between income and prices of fruits and vegetables, and the studies generally had medium to large sample sizes.

Directness

Although multiple studies were designed to examine a different outcome (e.g., diet quality, obesity, or differences in access to stores), they directly examined the relationship between income and price of fruits and vegetables. Some studies reported that store size and/or shopping behavior may explain pricing more than income. Further, most of the studies evaluated prices in stores, which made it difficult to answer the review question because the studies could not prove that neighborhood income was measured in the same individuals who purchased food at the study stores.

Generalizability

Overall the body of evidence was geographically diverse, particularly for the results of vegetables and fruits and vegetables combined, and thus the results were generalizable to the U.S. population. This was most clear

in the household studies, which were nationally representative; and, the studies in stores were also conducted across the U.S. For the results of fruits there were no nationally representative studies but results overall cover much of the country. There was some racial, ethnic, and socioeconomic diversity across the body of evidence.

Market baskets

Description of the evidence

Population

Ten cross-sectional studies^{2,6,8,9,11,18,20-24,26,27,34} and 1 prospective cohort study³⁷ reported market basket outcomes. These included 2 studies examining prices purchased by households (N=3,473³⁷ to 40,000⁸) and 9 studies examining price^{2,6,9,11,18,20-24,26,27,34} in stores (N=4²⁰ to 1,953²⁷). The body of evidence included samples from across the U.S. One study explicitly included small or convenience stores.²

Intervention/exposure

Four studies^{8,9,18,22-24} measured income, 6 studies^{2,6,11,20,21,34,37} measured geographic location as a proxy for income, and 1 study^{26,27} measured a socioeconomic proxy for income.

Outcome

All market baskets included foods from multiple food groups. Two studies^{8,23} measured the cost of all foods purchased, 4^{9,20-22} measured the cost of a USDA Market Basket meeting the Dietary Guidelines for Americans, and 4^{6,9,11,22,24} measured the cost of a diet based on the Thrift Food Plan. Three studies^{2,18,26,27} reported the prices of regular and healthier food options of market baskets and two studies^{34,37} simply reported foods across multiple food categories.

Synthesis of the evidence

Higher income related to higher prices of market baskets

Both studies of households^{8,37} found a statistically significant relationship between income and price of market baskets: higher income households paid more for market baskets than lower income households. The data were from households across the country, with large sample sizes (N=3,473 to 43,000). Five studies^{2,6,9,18,24} reported a statistically significant relationship between income and price of market baskets in stores (N=25^{9,24} to 110 stores⁶), such that stores in higher income neighborhoods had higher prices than stores in lower income neighborhoods. The studies took place primarily in California and in southern, eastern, and midwestern states. One study² explicitly included convenience stores.

Higher income related to lower prices of market baskets

Three studies of stores^{20,21,27,34} found a statistically significant finding that price of market baskets was lower in stores from higher versus lower income neighborhoods (N=4²⁰ to 1,953²⁷). The data were collected from across the U.S. None of the studies explicitly included small or convenience stores.

Non-significant associations between income and prices of market baskets

Six studies of stores 2,11,18,22,23,27,34 reported no relationship between income and the prices (N=55 11 to 1,953 27). The data were collected from across the U.S., and 1 study explicitly included convenience stores.

Assessment of the evidence

Risk of bias

The body of evidence was comprised primarily of cross-sectional studies with moderate to serious concerns of risk of bias. The studies generally had low risk of bias related to selection of participants into the study, deviations from intended exposures, and measurement of the outcomes. The major concerns in other domains are listed below, which limited the ability to draw clear summary statements:

- Two studies had serious^{21,37} ratings for deviations from intended exposures due to unbalanced coexposures between exposure groups.
- Most of the studies^{2,6,9,11,20,21,23,24,34} did not account for all key confounders, resulting in a serious risk of bias.
- The studies of stores had risk of bias related to the exposure classification because each study examined the exposure of income levels of neighborhoods near the stores, but could not provide evidence that residents of those neighborhoods in fact shopped at the study stores and thus may not have faced the food prices in those stores. The risk of bias was critical in 2 studies. 21,32
- Concerns emerged regarding risk of bias due to potential selection of reported results because none of the studies had pre-registered data analysis plans. However, given that the reported domains were generally consistent with reported methods and that most of the studies reported at least 1 nonstatistically significant result, the risk was judged to be moderate.
- One study⁸ did not provide sufficient information to evaluate risk of bias due to missing data.

Consistency

Results were inconsistent, but generally suggested a relationship between higher income and higher price of market baskets. Methods were generally similar across studies. Many studies noted that access to larger stores and/or purchasing behaviors explained prices more than income.

Precision

There was an adequate number of studies to investigate the relationship between income and prices of market baskets, with mostly medium or large sample sizes.

Directness

Multiple studies were designed to examine a different outcome (e.g., diet quality, obesity, or differences in access to stores), but still directly examined the relationship between income and price of market baskets. Some studies reported that store size and/or shopping behavior may explain pricing more than income. Further, most of the studies evaluated prices in stores, which made it difficult to answer the review question because the studies could not prove that neighborhood income was measured in the same individuals who purchased food at the study stores.

Generalizability

Overall, the body of evidence was geographically diverse, with more studies in urban than in rural areas, and included large, nationally representative studies. There was some racial, ethnic, and socioeconomic diversity across the body of evidence. Therefore, these studies were generalizable to the U.S. population.

Dairy

Description of the evidence

Population

Eleven cross-sectional studies reported dairy outcomes, including 10 studies examining price in stores^{1,7,10,18,22,23,26,27,29-32} (N=6¹ to 8,793³¹ stores), and 1 examining prices purchased by 43,000 households¹⁴ households). The body of evidence included samples from across the U.S., including two studies with nationally representative data. 26,27,31

Intervention/exposure

Six studies^{1,14,18,22,23,29,31} measured income, 4^{7,10,30,32} measured geographic location as a proxy for income, and 1 study^{26,27} measured a socioeconomic proxy for income.

Outcome

Outcomes included milk, cheese, and total dairy.

Synthesis of the evidence

Higher income related to higher prices of dairy

Four studies found a statistically significant relationship between income and the price of milk^{1,10,26} or low-fat dairy²² in grocery stores, such that prices were higher in stores in higher income neighborhoods than in lower income neighborhoods. Study sample sizes ranged from small (N=6)^{1,10} to large (N=1,743).²⁶ The study by Kern et al.²⁶ was nationally representative.

Higher income related to lower prices of dairy

Three studies 10,27,31 including 2 nationally representative studies, 27,31 reported a statistically significant between income and price of milk or dairy measured at grocery stores: prices of milk and dairy were higher in stores in higher income neighborhoods than stores in lower income neighborhoods. Study sample sizes ranged from small $(N=6)^{10}$ to large $(N=8,793)^{31}$

Non-significant associations between income and prices of dairy

The study of households¹⁴ found no relationship between income and the price of milk or cheese. Six studies^{7,18,22,23,29,30,32} found no relationship between income and the price of dairy, specifically milk, measured in stores. Study sample sizes ranged from 28³² to 73²⁹ stores, mostly from New York and the southern U.S. Two studies^{7,32} included convenience stores, and 1 of those³² had a critical rating for risk of bias due to exposure classification (Table 1-c) and thus could not provide useful information on the relationship between income and price of milk or cheese.

Assessment of the evidence

Risk of bias

The body of evidence was comprised of cross-sectional studies with generally moderate to serious concerns of risk of bias. The studies generally had low risk of bias related to selection of participants into the study, deviations from intended exposures, and measurement of the outcomes. The major concerns in other domains are listed below, which limited the ability to draw clear summary statements:

- Most of the studies^{1,7,10,14,23,29-32} did not account for all key confounders, resulting in a serious risk of bias.
- The studies of stores had risk of bias related to the exposure classification because each study examined the exposure of income levels of neighborhoods near the stores, but could not provide evidence that residents of those neighborhoods shopped at the study stores and thus may not have faced the food prices in those stores. The risk of bias was critical in 1 study.³²
- Concerns emerged regarding risk of bias due to potential selection of reported results because none of the studies had pre-registered data analysis plans. However, given that the reported domains were generally consistent with reported methods and that most of the studies reported at least 1 nonstatistically significant result, the risk was judged to be moderate.
- Three studies^{29,30,32} had missing data that differed between exposure groups, often due to a lack of availability of certain foods or food groups in 1 exposure group, resulting in risk of bias due to missing data. Another 2 studies 1,14 did not provide sufficient information to evaluate risk of bias due to missing data.

Consistency

Results were inconsistent for the relationship between income and the price of dairy, with generally similar methods across studies. Specific food items studies varied across studies. Many studies noted that access to larger stores and/or purchasing behaviors explained prices more than income.

Precision

There were an adequate number of studies to investigate the relationship between income and prices of dairy, with varied sample sizes.

Directness

Multiple studies were really designed to examine a different outcome (e.g., diet quality, obesity, or differences in access to stores), but still directly examined the relationship between income and price of dairy. Some studies reported that store size and/or shopping behavior may explain pricing more than income. Further, most of the studies evaluated prices in stores, which made it difficult to answer the review question because the studies could not provide evidence that neighborhood income was measured in the same individuals who faced food prices at the study stores.

Generalizability

Overall the body of evidence was fairly geographically diverse, and included large, nationally representative studies. There was some racial, ethnic, and socioeconomic diversity across the body of evidence. Therefore, these studies were generalizable to the U.S. population.

Grains

Description of the evidence

Population

Eight cross-sectional studies reported grains as individual foods or food group(s), including 7 studies examining price in stores^{1,7,18,22,23,29,30,32} (N=6¹ to 73²⁹ stores), and 1 examining prices purchased by 43,000

households. 14 The body of evidence included samples from across the U.S. Two studies in stores included small or convenience stores.7,32

Intervention/exposure

Five studies^{1,14,18,22,23,29} measured income and 3^{7,30,32} measured geographic location as a proxy for income. No studies measured a socioeconomic proxy for income.

Outcome

Outcomes included bread, breakfast cereals, flour, oatmeal, pasta, rice, and whole grains.

Synthesis of the evidence

Higher income related to higher prices of grains

Three studies^{1,18,32} found a statistically significant relationship suggesting that higher income was related to higher grains prices, but the results were difficult to interpret. In 1 study, 1 prices did not differ between neighborhoods, shoppers in higher income neighborhoods purchased more expensive grains than shoppers in lower-income neighborhoods, suggesting that the effects reflected consumer behavior rather than prices faced. In a 2nd study, ¹⁸ prices of more nutrient dense grains were reported in comparison to less nutrient dense grains, and the size of the store was a stronger determinant of relative price than income. Further, the third study³² had critical ratings for risk of bias due to exposure classification (**Table 1-c**) and thus could not provide useful information on the relationship between income and price of grains.

Higher income related to lower prices of grains

Two studies of stores reported a statistically significant relationship between income and the price of bread³⁰ and cereal²³: stores in higher income neighborhoods had higher prices than stores in lower neighborhoods.

Non-significant associations between income and prices of grains

One study of 43,000 households across the U.S.¹⁴ found no relationship between income and the price of grains, specifically the price of ready-to-eat breakfast cereal. Six studies in stores 1,7,18,22,23,29,32 found no relationship between income and the price of grains, specifically the price of whole grain bread. 7,18,23,29,32 Sample sizes ranged from 6¹ to 73²⁹ stores, and 2 of the studies^{7,32} included data from convenience stores. Stores were primarily located in the southern and eastern U.S.

Assessment of the evidence

Risk of bias

The body of evidence was comprised of cross-sectional studies with generally moderate to serious concerns of risk of bias. While the studies generally had low risk of bias related to selection of participants into the study, deviations from intended exposures, and measurement of the outcomes, other domains had generally higher risk of bias. The major concerns are listed below, which limited the ability to draw clear summary statements:

- Most of the studies^{1,7,14,23,29,30,32} did not account for all key confounders, resulting in a serious risk of bias.
- The studies of stores had serious risk of bias related to the exposure classification because each study examined the exposure of income levels in neighborhoods near the stores but did not provide evidence that residents of those neighborhoods shopped at the study stores. The risk of bias was critical in 1 study because the exposure was not clearly defined.³²

- Risk of bias due to potential selection of reported results was possible because none of the studies had
 pre-registered data analysis plans. However, the risk was judged to be moderate because the reported
 domains were generally consistent with reported methods and that most of the studies reported at least
 1 non-statistically significant result.
- Three studies^{29,30,32} had missing data that differed between exposure groups, often due to a lack of
 availability of certain foods or food groups in 1 exposure group, resulting in risk of bias due to missing
 data. Two additional studies^{1,14} did not provide sufficient information to evaluate risk of bias due to
 missing data.

Consistency

Results were inconsistent for the relationship between income and the price of grains, with little overlap in the specific foods studied. Within studies of households or stores, respectively, the methods were generally similar across studies. Some studies noted that access to larger stores and/or purchasing behaviors explained prices more than income; more of the higher-quality studies reported no relationship between income and price.

Precision

There were a somewhat small number of studies to investigate the relationship between income and grain prices, and the studies generally had small to medium sample sizes.

Directness

Most of the studies reported that store size and/or shopping behavior may explain pricing more than income. Further, most of the studies evaluated prices in stores, which made it difficult to answer the review question because the studies could not prove that neighborhood income was measured in the same people who purchased food at the study stores.

Generalizability

There were concerns with generalizability of the evidence as most studies were conducted in the eastern and midwestern regions of the U.S., and studies did not report sufficient information to evaluate the racial, ethnic, and socioeconomic diversity across the body of evidence.

Proteins

Description of the evidence

Population

Two cross-sectional studies reported protein food outcomes, including 1 study examining price in stores²³ (N=57 stores), and 1 examining prices purchased by households¹⁴ (N=43,000 households). Hayes et al.²³ was conducted in New York City and Davis et al.¹⁴ had a nationally representative sample.

Intervention/exposure

Both studies^{14,23} measured income. No studies measured either geographic or socioeconomic proxies for income.

Outcome

Outcomes included chicken, eggs, ground beef, peanut butter, and tuna.

Synthesis of the evidence

There was insufficient evidence to examine the relationship between income and price of protein foods.

Summary statements and research recommendations

Summary statements

The findings of the rapid review are presented in the following summary statements.

Fruits and vegetables

Evidence suggests that a higher income may be associated with a higher price of vegetables and fruits and vegetables combined, but shopping behavior may be an important factor in interpreting the data.

Evidence suggests no relationship between income and price of fruit, although higher income may be associated with a higher price of fruit. Store size and/or shopping behavior may explain pricing more than income.

All studies were cross-sectional, resulting in risk of bias concerns common in that study design. Most of the studies did not account for all key confounders and had risk of bias related to the exposure classification because most studies did not measure the exposure and outcome for the same individuals.

Market baskets

Evidence indicates that a higher income is associated with a higher price of market baskets. Income was more strongly associated with shopping behaviors and store size/access than the actual prices faced, although shopping behavior may be in response to prices.

Most of the studies did not account for all key confounders and had risk of bias related to the exposure classification because most studies did not measure the exposure and outcome for the same individuals.

Dairy

Evidence suggests that a higher income may be weakly associated with a lower price of dairy products, although studies were not consistent. Income was more strongly associated with shopping behaviors and store size/access than the actual prices faced, although shopping behavior may be in response to prices.

All studies were cross-sectional, resulting in risk of bias concerns common in that study design. Most of the studies did not account for all key confounders and had risk of bias related to the exposure classification because most studies did not measure the exposure and outcome for the same individuals.

Grains

Evidence suggests no relationship between income and price of grains, particularly whole-grain breads. There was not enough evidence to examine the relationship with other types of grains. Store size and or shopping behavior may explain pricing more than income.

All studies were cross-sectional, resulting in risk of bias concerns common in that study design. Most of the studies did not account for all key confounders and had risk of bias related to the exposure classification because most studies did not measure the exposure and outcome for the same individuals.

Protein foods

There was not enough evidence to examine the relationship between income and price of protein foods.

Research recommendations

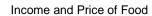
1. Conduct well-designed, longitudinal studies that examine the relationship between income and food price over time. In particular, these studies should directly examine the relationship between household-level income and actual prices at stores where household members shop for food.

- 2. Assess income exposures using standard definitions and categories to improve comparability across studies.
- 3. Assess food group prices using standard definitions and categories to improve comparability across studies.
- 4. Differentiate between participants in Federal assistance programs who are income-eligible, incomeeligible nonparticipants, and income-ineligible nonparticipants.
- 5. Account for store size/type, access to stores, as well as other potential confounders including urban versus rural setting and cultural/racial diversity or disparities, to better determine the response to income on food price as a function of these factors.

Table 1-b. Evidence examining the relationship between income and price^a


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Prospective cohort study				
Colabianchi, 2021 ³⁷	N=3473 All participants lived in public housing or project-based assisted housing located centrally in 1 of the five cities in a census tract with high poverty rates (i.e., 40% or more persons in the census tract had incomes < federal poverty threshold) in 1995-1998.	Geographic location Treatment Section 8 Control	Market basket	Direct relationship, Statistically significant Mean (log transformed), SE price per unit averaged across 13 categories, weighted linear regression, F-statistic: 16.50, p<0.001 Treatment (n=1428): 0.30, 0.026 Section 8 (n=982): 0.24, 0.030 Control (n=1063): 0.07, 0.031
Cross-sectional studies				
Akbay, 2005 ¹	N=6	Income • Lower	Breakfast cereals	Direct relationship, Statistically significant
	Analytic N is stores (supermarkets); Columbus, Ohio metropolitan area	● Higher		Mean price paid for food products, cents per ounce Breakfast cereals, t-test Private brand price Lower income: 14.16 Higher income: 14.73 t: -4.72; p<0.01
				National brand price Lower income: 20.02 Higher income: 21.29 t: -11.60; p<0.01

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Cooking oil	Direct relationship, Statistically significant
				Mean price paid for food products, cents per ounce Cooking oil, t-test
				Private brand price
				Lower income: 6.99
				Higher income: 11.98
				t: -25.44; p<0.01
				National brand
				Lower income: 7.89
				Higher income: 15.34
				t: -27.88; p<0.01
			Ice cream	Direct relationship, Statistically significant
				Mean price paid for food products, cents per ounce
				Ice cream, t-test
				Private brand price
				Lower income: 3.50
				Higher income: 3.98
				t: -11.49; p<0.01
				National brand
				Lower income: 6.66
				Higher income: 9.28
				t: -20.95; p<0.01
			Mayonnaise	No relationship, Statistically non-significant
				Mayonnaise, t-test
				Private brand price
				Lower income: 6.18
				Higher income: 6.28
				t: -1.69; p<0.10
				National brand
				Lower income: 11.29
				Higher income: 11.27
				t: -0.17; p>0.10



Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Milk	Direct relationship (National brand), Statistically significant
				Mean price paid for food products, cents per ounce Fluid milk, t-test
				Private brand price Lower income: 1.81
				Higher income: 1.85
				t: -1.47; p>0.10
				National brand
				Lower income: 3.33
				Higher income: 4.37 t: -22.6; p<0.01
			Pasta	Direct relationship (National brand), Statistically significant
				Mean price paid for food products, cents per ounce
				Pasta, t-test
				Private brand price
				Lower income: 5.50
				Higher income: 5.52
				t: -0.72; p>0.10
				National brand
				Lower income: 8.06
				Higher income: 9.14
			Salad	t: -13.75; p<0.01 Direct relationship, Statistically significant
			dressing	1, , ,
				Mean price paid for food products, cents per ounce
				Salad dressing, t-test
				Private brand price
				Lower income: 9.67
				Higher income: 10.62 t: -8.70; p<0.01
				National brand
				Lower income: 13.41
				Higher income: 17.22
				t: -16.51; p<0.01

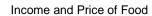


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Salty Snacks	Direct relationship (National brand) Inverse relationship (Private brand), Statistically significant
				Mean price paid for food products, cents per ounce Salty snacks, t-test
				Private brand price
				Lower income: 13.06
				Higher income: 12.65 t: 3.02; p<0.01
				National brand
				Lower income: 19.60
				Higher income: 20.22
				t: -5.83; p<0.01
			Vegetables	Direct relationship, Statistically significant
				Mean price paid for food products, cents per ounce
				Frozen vegetables, t-test
				Private brand price
				Lower income: 8.60
				Higher income: 11.61
				t: -9.47; p<0.01
				National brand
				Lower income: 12.51
				Higher income: 13.06 t: -4.97; p<0.01
Andreyeva, 2008 ²	N=48, 75	Geographic location	Produce	No relationship, Statistically non-significant
	Study 1: Analytic N=48 stores	• Lower		Study 1: Average prices were not significantly different between
	Supermarkets within a three-mile	Higher		lower- and higher-income neighborhoods
	distance from neighborhoods			ů ů
	Study 2: Analytic N=75 stores (19		Healthier Market Basket	Direct relationship, Statistically significant
	small and large grocery stores; 56 convenience stores)		iviai ket dasket	Study 2: Average prices of healthful food basket, t-test
	CONVENIENCE SICHES)			Low-income area: \$26.10
				High-income area: \$27.20
				p<0.05

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Market basket	Direct relationship, Statistically significant
				Study 2: Average prices of all-foods basket, t-test Low-income area: \$46.70
				High-income area: \$48.50 p<0.05
			Unhealthy food price	Direct relationship, Statistically non-significant
			·	Study 2: Average prices of regular food basket, t-test Low-income area: \$20.60 High-income area: \$21.30
				p>0.05
Ard, 2010 ³	N=44	Geographic location	Potatoes	Direct relationship (t-test), Statistically significant No relationship (multiple linear regression), Statistically
	Analytic N is grocery stores in Jefferson and Shelby counties	% HH below poverty level		non-significant
	Neighborhood median characteristics:			Price/serving of white potatoes during spring months, multiple linear regression (adjusted for % African American and % ≥ high school diploma)
	29% African American			Beta coefficient (SE),
	80% ≥high school diploma			% HH below poverty level: 0.000 (0.001), p=0.92
	12% HH <poverty level<="" td=""><td></td><td></td><td>F (35,3): 4.073, Adjusted R²: 0.195</td></poverty>			F (35,3): 4.073, Adjusted R ² : 0.195
				Mean prices for potatoes, t-test, p=0.004
				Highest tertile for % below poverty level: \$0.09
				Lowest tertile for % below poverty level: \$0.13
			Strawberries	Direct relationship, Statistically significant
				Mean price of strawberries, t-test, p=0.048
				Middle tertile for % below poverty level: \$0.16
				Top tertile for % below poverty level: NR but lower than middle tertile

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Beydoun, 2008 ⁵	N=7331 Analytic N is nationally representative sample of 7331 adults from USDA Continuing Survey of Food Intakes by Individuals (CSFII) 1994–1996. Mean age of 39.8 (SD: 0.25); 13.3 (SD: 1.0) years of education, 51% female, 74% non-Hispanic White; highest proportion lived in the South (36%); 47% lived in suburban areas	Income • PIR ≤130% • PIR 131-299% • PIR ≥300%	Fruits and Vegetables	Inverse relationship, Statistically significant FV-PI Weighted Mean (SEM), ANOVA, p<0.05 ≤130% (n=1616): \$0.728 (0.009) 131-299% (n=2713): \$0.722 (0.007) ≥300% (n=3002): \$0.727 (0.007) FV-PI Weighted Mean (SEM), ANOVA, p<0.05 ≤130%: \$0.728 (0.009) 131-299%: \$0.722 (0.007) ≥300%: \$0.727 (0.007)
Beydoun, 2011 ⁴	N=8438 Analytic N is nationally representative sample of 6759 children aged 2-9 y and 1679 adolescents age 10-18 y from USDA Continuing Survey of Food Intakes by Individuals (CSFII) 1994–1996 and additional data collected from children aged 2–9 y in 1998.	Income	Fruits and Vegetables	Direct relationship (Children), Statistically significant No relationship (Adolescents), Statistically non-significant FV-PI among children (2-9 y) Weighted Mean (SE), ANOVA, p<0.05 ≤185%: \$0.72 (0.01) >185%: \$0.73 (0.01) FV-PI among adolescents (10-18 y) Weighted Mean (SE), ANOVA, p≥0.05 ≤185%: \$0.72 (0.01) >185%: \$0.72 (0.01)
Block, 2006 ⁶	N=110 Analytic N is stores; Austin: population 117,527, 42% of the HH lived in homes for ≥10 years. 24% HH <poverty 52,500.="" a="" african="" american="" averages="" income="" level;="" lower="" middle="" mixed="" oak="" park:="" population="" primarily="" profile<="" suburb="" td="" uppermiddle-income="" with=""><td>Geographic location • Austin • Oak Park</td><td>USDA Market Basket</td><td>Direct relationship, Statistically significant Difference of means t-test: Austin \$110 vs. Oak Park \$122; P<0.001</td></poverty>	Geographic location • Austin • Oak Park	USDA Market Basket	Direct relationship, Statistically significant Difference of means t-test: Austin \$110 vs. Oak Park \$122; P<0.001

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Borja, 2019 ⁷	N=65 Analytic N is stores, including 25 grocery stores and 40 convenience stores	Geographic location low-income areas not-low-income	Apples	Direct relationship (regression), Statistically significant No relationship (t-test), Statistically non-significant Mean prices of apples per unit T-test, P=NS
	County population of 1,408,566, 75% White, 18% African American,	areas		Low-income areas: \$0.78 Not-low-income areas: \$0.79
	29% Hispanic or Latino Median household income of \$51,681			Beta coefficient (SE), Income and price regression (adjusted for distance, no car, density, and store type) Apple: 0.31 (0.13), p<0.05
			Bananas	Direct relationship (regression), Statistically significant No relationship (t-test), Statistically non-significant
				Mean prices of bananas per unit T-test, P=NS Low-income areas: \$0.39
				Not-low-income areas: \$0.38
				Beta coefficient (SE), Income and price regression (adjusted for distance, no car, density, and store type) Banana: 0.22 (0.11), p<0.05
			Bread	Direct relationship, Statistically non-significant
				Mean prices for white bread T-test, P=NS
				Low-income areas: \$2.73 Not-low-income group: \$2.89
				Mean prices for whole wheat bread T-test, P=NS
				Low-income areas: \$2.85 Not-low-income group: \$2.87
				Beta coefficient (SE), Income and price regression (adjusted for distance, no car, density, and store type) White bread: -0.02 (0.39), NS
				Wheat bread: 0.05 (0.43), NS


USDA	United States Department of Agriculture
	Agriculture

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Breakfast cereals	No relationship, Statistically non-significant
				Mean prices of high sugar content cereal per 17/18 oz box T-test, P=NS
				Low-income areas: \$4.44 Not-low-income areas: \$4.03
				Mean prices of low sugar content cereal per 17/18 oz box T-test, P=NS
				Low-income areas: \$3.96
				Not-low-income areas: \$3.85
				Beta coefficient (SE), Income and price regression (adjusted for distance, no car, density, and store type)
				High sugar content cereal: -0.24 (0.39), NS Low sugar content cereal: -0.23 (0.34), NS
			Milk	No relationship, Statistically non-significant
				Mean price of whole milk (1 gallon) T-test, P=NS
				Low-income areas: \$4.28
				Not-low-income areas: \$4.02
				Mean price of 2%-fat milk (1 gallon) T-test, P=NS
				Low-income areas: \$4.21
				Not-low-income areas: \$3.96
				Mean price of 1%-fat milk (1 gallon) T-test, P=NS
				Low-income areas: \$3.79
				Not-low-income areas: \$3.69
				Mean price of skim milk (1 gallon) T-test, P=NS
				Low-income areas: \$3.73
				Not-low-income areas: \$3.59
				Beta coefficient (SE), Income and price regression (adjusted for distance, no car, density, and store type)
				Whole milk: 0.05 (0.27), NS
				1% milk: 0.28 (0.28), NS
				2% milk: 0.26 (0.27), NS

Study and Participant Characteristics	Intervention	Outcome(s)	Results
		Oranges	No relationship, Statistically non-significant
			Mean prices of oranges per unit T-test, P=NS Low-income areas: \$0.88 Not-low-income areas: \$0.92
			Beta coefficient (SE), Income and price regression (adjusted for distance, no car, density, and store type) Orange: 0.14 (0.16), NS
N=40,000	Income	Food	Direct relationship, Statistically significant
Analytic N is demographically representative households Analytic N is demographically representative household and 452 stores across the U.S	COMMINGUES		Ln (Price), Regression, within R ² : 0.0638 Coefficient (SE), (adjusted for log income in household's zipcode, log income income in store's zipcode, household size, age, race, marital status, city of residence, and retail chain controls) Log HH Income: 0.0088 (0.0001), p<0.01 Food, produce not included Ln (Price), Regression, R ² : 0.0304 Coefficient (SE), (adjusted for log income in household's zipcode, log income income in store's zipcode, race, store type, household size, age, marital status, and city of residence) Log HH Income: 0.0117 (0.0001), p<0.01 Non-random weight foods Ln (Price), Regression, R ² : 0.0764 Coefficient (SE), (adjusted for log income in household's zipcode, log income income in store's zipcode, household size, age, race, marital status, and city of residence, retail chain controls) Log HH Income: 0.0079 (0.0001), p<0.01 Random weight foods Ln (Price), Regression, R ² : 0.0474 Coefficient (SE), (adjusted for log income in household's zipcode, log income income in store's zipcode, household size, age, race, marital status, and city of residence, retail chain controls)
	N=40,000 Analytic N is demographically representative households Analytic N is demographically representative household and 452	N=40,000 Income continuous Analytic N is demographically representative households Analytic N is demographically representative household and 452	N=40,000 Income continuous Analytic N is demographically representative households Analytic N is demographically representative household and 452

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Cassady, 2007 ⁹	N=75	Income • Very low	2005 DGA Market Basket	Direct relationship, Statistically significant
	N=75 observations across 25 stores	• Low		2005 DGA Market Basket
	and 3 timepoints	 Middle 		Mean total cost of F&V, t-test
	Number of observations by store	• High		Very Low : \$64.94
	type (N): Bulk (12), Independent (9),	9		Low: \$66.67
	Chain (54)			Middle: \$77.82, vs. Very Low p<0.05, vs. Low p<0.05
				High: \$73.07, vs. Very Low p<0.05, vs. Low p<0.05
			TFP Food Basket	Direct relationship, Statistically significant
				TFP market basket
				Mean total cost of F&V, t-test
				Very Low and Low: \$65
				Middle and High: \$78, vs. Very Low and Low p≤0.05
			Fruit	Direct relationship (Middle vs. lower), Statistically
				significant
				No relationship (High vs. lower), Statistically non- significant
				2005 DGA Market Basket
				Mean cost of fruit, t-test
				Very Low: \$31.60
				Low: \$32.84
				Middle: \$37.62, vs. Very Low p<0.05, vs. Low p<0.05
				High: \$35.60

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Vegetables	Direct relationship, Statistically significant
				2005 DGA Market Basket Mean cost of vegetables, t-test Very Low: \$33.34 Low: \$34.28 Middle: \$40.19, vs. Very Low p<0.05, vs. Low p<0.05 High: \$37.47, vs. Very Low p<0.05, vs. Low p<0.05, vs. Middle p<0.05
				Mean cost of dark green vegetables, t-test, p>0.05 Very Low: \$4.41 Low: \$4.70 Middle: \$4.89 High: \$4.63
				Mean cost of orange vegetables, t-test Very Low: \$1.60 Low: \$1.76 Middle: \$2.33, vs. Very Low p<0.05, vs. Low p<0.05 High: \$2.17, vs. Very Low p<0.05, vs. Low p<0.05
				Mean cost of legumes, t-test, p>0.05 Very Low: \$9.05 Low: \$8.58 Middle: \$9.66 High: \$9.82
				Mean cost of starchy vegetables, t-test Very Low: \$2.81 Low: \$2.94 Middle: \$4.22, vs. Very Low p<0.05, vs. Low p<0.05 High: \$3.38
				Mean cost of other vegetables, t-test Very Low: \$15.77 Low: \$15.84 Middle: \$19.09, vs. Very Low p<0.05, vs. Low p<0.05 High: \$17.47
			Fruit	Direct relationship, Statistically significant
				TFP market basket Mean cost of fruit, t-test, Data NR

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Vegetables	Direct relationship, Statistically significant
				TFP market basket (Prices NR)
				Mean cost of vegetables
				High more than Very Low and Low, p>0.05
				Mean cost of orange vegetables
				Middle more than Very Low and Low, p≤0.05
				High more than Very Low and Low, p≤0.05
				Mean cost of starchy vegetables
				Middle more than Very Low and Low, p≤0.05
				Mean cost of other vegetables
				Middle more than Very Low and Low, p≤0.05

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Chang, 2011 ¹⁰	Characteristics N=6 Analytic N is stores Race: Inner-city: White: 76.2%, Black: 21.7%, Other: 2.0% Suburban: White: 93.6%, Black: 3.5%, Other: 3.0% Education: Inner-city: 30.4% at least some college, 33.7% did not graduate from high school Suburban: 65% at least some college, 11.3% did not graduate from high school	Geographic location • Low Income • High Income	Milk	Direct relationship (organic milk), Statistically significant Inverse relationship (conventional skim milk), Statistically significant Price per half gallon Mean conventional whole milk prices, t-test, p=0.50 Inner-city: \$1.297 Suburban: \$1.305 Mean conventional 2% milk prices, t-test, p=0.38 Inner-city: \$1.297 Suburban: \$1.308 Mean conventional 1% milk prices, t-test, p=0.24 Inner-city: \$1.284 Suburban: \$1.269 Mean conventional skim milk prices, t-test, p=0.00 Inner-city: \$1.363 Suburban: \$1.324 Mean organic whole milk prices, t-test, p=0.00 Inner-city: \$2.980 Suburban: \$3.251 Mean organic 2% milk prices, t-test, p=0.00 Inner-city: \$3.217 Suburban: \$3.267 Mean organic 1% milk prices, t-test, p=0.00 Inner-city: \$3.210 Suburban: \$3.411 Mean organic skim milk prices, t-test, p=0.00 Inner-city: \$2.877

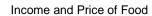
Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Chung, 1999 ¹¹	N=55 N is stores Nonpoor (n=31): zip codes with <10% below poverty level; 87% of chain stores and 60% of nonchain stores in these ZIP Poor (n=24): zip codes with ≥10% below poverty level; 13% of chain stores and 40% of nonchain stores in these ZIP	Geographic location • Poor • Non-poor	TFP Food Basket	Inverse relationship, Statistically significant Mean basket price, t-test Poor: \$110.36 Non-poor: \$105.21 Difference: \$5.15 Difference (adjusted for chains and availability): \$3.41 t-value: 1.3076, p>0.10 Recursive model, Adj R^2=0.2535, p=0.0009 Coefficient, t-value Poor: -1.5223, -0.329 (NS) Adjusted for chain supermarket, % stores in ZIP chains, availability index
Cole, 2010 ¹²	N=45 Analytic N is census tracts two Brooklyn Community Districts (BCD). BCD 6 included Carroll Gardens, Cobble Hill, Park Slope, Gowanus, and Red Hook. BCD 9 included Crown Heights South, Prospect Lefferts Gardens, and Wingate.	SES proxy • >80% Black (low income) • 20-80% Black (middle) • <20% Black (high income)	Apples	Direct relationship, Statistically significant Mean (SD) price of apples, statistical method NR, p=significant Predominantly Black, low-income (n=3): \$0.44 (n/a) Mixed race, middle income (n=7): \$0.52 (0.11) Predominantly White, high-income (n=17): \$0.70 (0.24)
			Asparagus	Direct relationship, Statistically significant Mean (SD) price of asparagus, statistical method NR, p=significant Predominantly Black, low-income (n=1): \$2.39 (n/a) Mixed race, middle income (n=1): \$n/a (n/a) Predominantly White, high-income (n=5): \$3.06 (1.01)
			Avocados	Direct relationship, Statistically significant Mean (SD) price of avocados, statistical method NR, p=significant Predominantly Black, low-income (n=1): \$n/a (n/a) Mixed race, middle income (n=6): \$1.31 (0.41) Predominantly White, high-income (n=11): \$1.79 (0.38)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Bananas	Direct relationship, Statistically significant
				Mean (SD) price of yellow bananas, statistical method NR, p=significant
				Predominantly Black, low-income (n=0): \$n/a (n/a)
				Mixed race, middle income (n=10): \$0.24 (0.06)
				Predominantly White, high-income (n=18): \$0.29 (0.09)
			Berries	Direct relationship, Statistically significant
				Mean (SD) price of berries, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$3.33 (n/a)
				Mixed race, middle income (n=5): \$3.24 (1.75)
			D!'	Predominantly White, high-income (n=11): \$4.10 (1.39)
			Broccoli	Direct relationship, Statistically significant
				Mean (SD) price of broccoli, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$1.49 (n/a)
				Mixed race, middle income (n=2): \$0.99 (n/a)
				Predominantly White, high-income (n=7): \$2.32 (0.71)
			Corn	Direct relationship, Statistically significant
				Mean (SD) price of corn, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$n/a (n/a)
				Mixed race, middle income (n=4): \$0.33 (n/a)
			0	Predominantly White, high-income (n=8): \$0.89 (0.44)
			Cucumbers	Direct relationship, Statistically significant
				Mean (SD) price of cucumbers, statistical method NR,
				p=significant Prodominantly Block law income (p. 4), \$0.50 (p/p)
				Predominantly Black, low-income (n=1): \$0.50 (n/a) Mixed race, middle income (n=6): \$0.34 (0.15)
				Predominantly White, high-income (n=11): \$0.55 (0.42)
			Eggplant	Direct relationship, Statistically significant
				Mean (SD) price of eggplants, statistical method NR,
				p=significant
				Predominantly Black, low-income (n=1): \$n/a (n/a)
				Mixed race, middle income (n=5): \$0.63 (0.11)
				Predominantly White, high-income (n=6): \$1.09 (0.36)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Grapefruit	Direct relationship, Statistically significant
				Mean (SD) price of grapefruit, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$0.65 (n/a)
				Mixed race, middle income (n=5): \$0.60 (0.24)
				Predominantly White, high-income (n=12): \$1.24 (0.75)
			Green beans	Direct relationship, Statistically significant
				Mean (SD) price of green beans (lb), statistical method NR,
				p=significant
				Predominantly Black, low-income (n=2): \$0.99 (n/a)
				Mixed race, middle income (n=5): \$2.94 (n/a)
			Lemons	Predominantly White, high-income (n=9): \$2.31 (0.58) Direct relationship, Statistically significant
			Lomons	Direct relationship, otatistically significant
				Mean (SD) price of lemons, statistical method NR, p=significant
				Predominantly Black, low-income (n=4): \$0.25 (n/a)
				Mixed race, middle income (n=6): \$0.27 (0.04)
				Predominantly White, high-income (n=15): \$0.42 (0.22)
			Lettuce	Direct relationship, Statistically significant
				Mean (SD) price of greens, lettuce, statistical method NR, p=significant
				Predominantly Black, low-income (n=3): \$0.99 (n/a)
				Mixed race, middle income (n=6): \$1.35 (0.51)
				Predominantly White, high-income (n=11): \$1.43 (0.96)
			Limes	Direct relationship, Statistically significant
				Mean (SD) price of limes, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$0.15 (n/a)
				Mixed race, middle income (n=4): \$0.17 (0.05)
				Predominantly White, high-income (n=14): \$0.42 (0.23)
			Mangoes	No relationship, Statistically non-significant
				Mean (SD) price of mangoes, statistical method NR, p=NS
				Predominantly Black, low-income (n=1): \$1.50 (n/a)
				Mixed race, middle income (n=5): \$1.47 (0.35)
				Predominantly White, high-income (n=14): \$1.39 (0.47)


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Melons	Direct relationship, Statistically significant
				Mean (SD) price of melons, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$1.50 (n/a)
				Mixed race, middle income (n=6): \$1.60 (1.12)
				Predominantly White, high-income (n=10): \$3.12 (1.39)
			Mushrooms	Direct relationship, Statistically non-significant
				Mean (SD) price of mushrooms (lb), statistical method NR, p=NR
				Predominantly Black, low-income (n=1): \$n/a (n/a)
				Mixed race, middle income (n=2): \$3.39 (n/a)
				Predominantly White, high-income (n=7): \$6.24 (3.20)
			Okra	Inverse relationship, Statistically significant
				Mean (SD) price of okra (lb), statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$3.99 (n/a)
				Mixed race, middle income (n=2): \$2.00 (n/a)
				Predominantly White, high-income (n=2): \$1.54 (1.34)
			Oranges	Direct relationship, Statistically significant
				Mean (SD) price of oranges, statistical method NR, p=significant
				Predominantly Black, low-income (n=3): \$0.33 (n/a)
				Mixed race, middle income (n=6): \$0.44 (0.07)
				Predominantly White, high-income (n=15): \$0.56 (0.24)
			Pears	Direct relationship, Statistically significant
				Mean (SD) price of pears, statistical method NR, p=significant
				Predominantly Black, low-income (n=0): \$n/a (n/a)
				Mixed race, middle income (n=5): \$0.49 (0.05)
				Predominantly White, high-income (n=9): \$0.76 (0.22)
			Peppers	Direct relationship, Statistically significant
				Mean (SD) price of peppers, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$0.33 (n/a)
				Mixed race, middle income (n=7): \$0.56 (0.08)
				Predominantly White, high-income (n=11): \$0.94 (0.49)
			Pineapple	Direct relationship, Statistically significant
				Mean (SD) price of pineapples, statistical method NR,
				p=significant
				Predominantly Black, low-income (n=0): \$n/a (n/a)
				Mixed race, middle income (n=4): \$1.99 (n/a)
				Predominantly White, high-income (n=9): \$4.42 (1.13)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Plums	Direct relationship, Statistically significant
				Mean (SD) price of plums, statistical method NR, p=significant Predominantly Black, low-income (n=0): \$n/a (n/a)
				Mixed race, middle income (n=5): \$0.34 (0.20)
				Predominantly White, high-income (n=11): \$0.67 (0.30)
			Potatoes	Direct relationship, Statistically significant
				Mean (SD) price of potatoes, statistical method NR, p=significant
				Predominantly Black, low-income (n=6): \$0.33 (n/a)
				Mixed race, middle income (n=9): \$0.41 (0.36)
				Predominantly White, high-income (n=17): \$1.01 (1.63)
			Squash	Direct relationship, Statistically significant
				Mean (SD) price of squash, statistical method NR, p=significant
				Predominantly Black, low-income (n=1): \$1.00 (n/a)
				Mixed race, middle income (n=6): \$1.00 (0.49)
				Predominantly White, high-income (n=8): \$1.61 (1.30)
			Tomatoes	Direct relationship, Statistically significant
				Mean (SD) price of , statistical method NR, p=significant
				Predominantly Black, low-income (n=3): \$0.54 (n/a)
				Mixed race, middle income (n=7): \$0.51 (0.07)
				Predominantly White, high-income (n=17): \$0.77 (0.33)
Daepp, 2015 ¹³	N=40	Income • Low	Broccoli	No relationship, Statistically non-significant
	Analytic N = stores	• High		Broccoli (bunch) in grocery stores
	7 mary no 14 – stores	• riigir		High vs. Low income
				Kruskall Wallis Chi-square: 3.7817, p=0.0518
			Cabbage	No relationship, Statistically non-significant
				Cabbage (1 lb) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 0.9724, p=0.3241
			Carrots	No relationship, Statistically non-significant
				Carrots (1 lb) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 0.3628, p=0.547



Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Cauliflower	Direct relationship, Statistically significant
				Cauliflower (pc) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 5.2067, p=0.0225
			Celery	No relationship, Statistically non-significant
				Celery (stalk) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 0.2384, p=0.6254
			Corn	No relationship, Statistically non-significant
				Corn (3 pc) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 2.1, p=0.1473
			Cucumbers	No relationship, Statistically non-significant
				Cucumber (pc) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 0, p=1.0000
			Lettuce	No relationship, Statistically non-significant
				Lettuce in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 1.1126, p=0.2915
			Peppers	No relationship, Statistically non-significant
				Peppers (pc) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 0.7445, p=0.3882
			Tomatoes	No relationship, Statistically non-significant
				Tomatoes (1 lb) in grocery stores
				High vs. Low income
				Kruskall Wallis Chi-square: 0.5038, p=0.4778

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Davis, 2005 ¹⁴	N=43000	Income	Beans	No relationship, Statistically non-significant
	Analytic N = about 43,000 households from 24 cities in 17 States	Low income;WIC eligibleHigh income		Prices for dried beans/peas did not differ between income classes. (Statistical test NR)
	California (San Francisco/Oakland, Los Angeles, Visalia), Colorado (Denver, Grand Junction), Florida (Tampa/St. Petersburg), Georgia (Atlanta, Rome); Illinois (Chicago), Iowa (Cedar Rapids)			
			Breakfast cereals	No relationship, Statistically non-significant
				Prices for baby cereals and ready-to-eat breakfast cereals did not differ between income classes. (Statistical test NR)
			Cheese	No relationship, Statistically non-significant
				Prices for cheese did not differ between income classes. (Statistical test NR)
			Eggs	No relationship, Statistically non-significant
				Prices for eggs did not differ between income classes. (Statistical test NR)
			Juice	No relationship, Statistically non-significant
				Prices for fruit and vegetable juice did not differ between income classes. (Statistical test NR)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Milk	No relationship, Statistically non-significant
				Mean milk price (1 gal), Statistical test NR
				Low income, WIC eligible, High income, p=non-significant
				CA: \$2.61, \$2.57, \$2.70
				CO: \$2.49, \$2.52, \$2.43
				FL: \$2.98, \$3.00, \$3.00
				GA: \$2.55, \$2.61, \$2.69
				IA: \$2.33, \$2.36, \$2.30
				IL: \$2.52, \$2.46, \$2.54
				KS: \$2.66, \$2.64, \$2.64
				MA: \$2.62, \$2.65, \$2.61
				MI: \$2.57, \$2.55, \$2.57
				MN: \$2.89, \$2.88, \$2.88
				MO: \$2.76, \$2.77, \$2.76
				NY: \$2.92, \$2.87, \$2.90
				PA: \$2.36, \$2.48, \$2.37
				TN: \$2.82, \$2.81, \$2.85
				TX: \$2.43, \$2.37, \$2.40
				WA: \$2.52, \$2.52, \$2.62
				WI: \$2.51, \$2.53, \$2.51
			Peanut butter	No relationship, Statistically non-significant
				Prices for peanut butter did not differ between income classes.
				(Statistical test NR)
DeWeese, 2017 ¹⁵	N=104	Income	Chips	No relationship, Statistically non-significant
		• Low		
	Analytic N is New Jersey corner	Med		Mean price of chips, ANOVA, P=NS
	stores for metro areas of Camden,	High		Lowest income (≥54%): \$0.45
	Newark, New Brunswick, and			Medium income (34-<54%): \$0.49
	Trenton, NJ			Highest income (<34%): \$0.45
			Fruit	No relationship, Statistically non-significant
				Mean price of fruit, ANOVA, P=NS
				Lowest income (≥54%): \$0.49
				Medium income (34-<54%): \$0.50
				Highest income (<34%): \$0.47

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Dunn, 2011 ¹⁶	N=23	Income	Fruit	Direct relationship (High variety), Statistically non-
		Median family		significant
	Analytic N = 23 stores from 6 rural	income		No relationship (Basic variety), Statistically non-significant
	counties in the Brazos Valley, located between Dallas and			Fruit Drice Index, High Veriety
	Houston.			Fruit Price IndexHigh Variety Multivariate regression, R^2=0.19, N=21
	Census block group characteristics			Coefficient estimates (robust SE), adjusted for race
	of the included stores, Mean (SD):			Median family income (In): B=10.15 (5.99), p>0.05
	Median family income: \$30,083			Median family income (iii). b=10.15 (5.99), p>0.05
	(\$7,290)			Fruit Price IndexBasic Variety
	Proportion Black: 21.2% (16.1%)			Multivariate regression, R^2=0.02, N=22
	Proportion Hispanic: 16.5% (9.7%)			Coefficient estimates (robust SE), adjusted for race
	1 10portion 1 iispanie. 10.5 /6 (5.7 /6)			Median family income (ln): B=-0.12 (3.49), p>0.05
-			Vegetables	Direct relationship, Statistically non-significant
			vegetables	Direct relationship, Statistically non-significant
				Vegetable Price IndexHigh Variety
				Multivariate regression, R^2=0.14, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=13.87 (6.94), p>0.05
				Vegetable Price IndexBasic Variety
				Multivariate regression, R^2=0.15, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=16.12 (8.11), p>0.05
			Apples	No relationship, Statistically non-significant
				Price of apples (\$/lb)
				Multivariate regression, R^2=0.09, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.50 (0.45), p>0.05
			Avocados	Direct relationship, Statistically significant
				Price of avocados (\$/lb)
				Multivariate regression, R^2=0.48, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=3.78 (1.37), p<0.01
			Bananas	No relationship, Statistically non-significant
				Price of bananas (\$/lb)
				Multivariate regression, R^2=0.17, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-0.16 (0.10), p>0.05


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Beans	Inverse relationship, Statistically significant
				Price of green beans (\$/lb)
				Multivariate regression, R^2=0.22, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-2.05 (1.03), p<0.05
			Berries	No relationship, Statistically non-significant
				Price of berries (\$/lb)
				Multivariate regression, R^2=0.11, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.21 (1.04), p>0.05
			Carrots	No relationship, Statistically non-significant
				Price of carrots (\$/lb)
				Multivariate regression, R^2=0.15, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-0.16 (0.44), p>0.05
			Corn	No relationship, Statistically non-significant
				Price of corn (\$/lb)
				Multivariate regression, R^2=0.16, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.03 (0.53), p>0.05
			Cruciferous vegetables	No relationship, Statistically non-significant
			J	Price of cruciferous vegetables (\$/lb)
				Multivariate regression, R^2=0.15, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.26 (0.30), p>0.05
			Grapes	No relationship, Statistically non-significant
				Price of grapes (\$/lb)
				Multivariate regression, R^2=0.04, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.54 (0.60), p>0.05
			Greens	No relationship, Statistically non-significant
				Price of greens (\$/lb)
				Multivariate regression, R^2=0.11, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-0.30 (0.33)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Lettuce	No relationship, Statistically non-significant
				Price of lettuce (\$/lb)
				Multivariate regression, R^2=0.31, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=1.11 (0.67), p>0.05
			Melons	No relationship, Statistically non-significant
				Price of melons (\$/lb)
				Multivariate regression, R^2=0.01, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.09 (0.38), p>0.05
			Onions	No relationship, Statistically non-significant
				Price of onions (\$/lb)
				Multivariate regression, R^2=0.06, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.51 (0.54), p>0.05
			Oranges	No relationship, Statistically non-significant
				Price of oranges (\$/lb)
				Multivariate regression, R^2=0.02, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-0.03 (0.40), p>0.05
			Peaches	No relationship, Statistically non-significant
				Price of peaches (\$/lb)
				Multivariate regression, R^2=0.08, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-0.30 (0.49), p>0.05
			Pears	No relationship, Statistically non-significant
				Price of pears (\$/lb)
				Multivariate regression, R^2=0.02, N=21
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=-0.06 (0.55), p>0.05
			Potatoes	No relationship, Statistically non-significant
				Price of potatoes (\$/lb)
				Multivariate regression, R^2=0.13, N=23
				Coefficient estimates (robust SE), adjusted for race
				Median family income (In): B=0.48 (0.39), p>0.05

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Squash	Direct relationship, Statistically significant
				Price of squash (\$/lb)
				Multivariate regression, R^2=0.26, N=23 Coefficient estimates (robust SE), adjusted for race
			Tomatoes	Median family income (In): B=1.08 (0.41), p<0.01 No relationship, Statistically non-significant
			· omatos	
				Price of tomatoes (\$/lb) Multivariate regression, R^2=0.07, N=23
				Coefficient estimates (robust SE), adjusted for race Median family income (In): B=0.62 (0.49), p>0.05
French, 2010 ¹⁷	N=90	Income • Low	Fruits and Vegetables	Direct relationship, Statistically significant
	Analytic N is households Mean of four people per household. Primary shoppers were 93% female; 78% White; Mean age 40.8 y (SD=7.3); 64% married or living with significant other; 25.8% had more	Med High	vogotablee	Monthly median price per person per ounce of fruits/vegetables eaten at home, Jonckheere-Terpstra test, p=0.007 Low: \$0.08 Med: \$0.08 High: \$0.10
C:U 204518	than a college degree; mean BMI: 29.7 (SD=7.2)	- Income	l lookkion	No volationakin Otatistically non-simificant
Gillespie, 2015 ¹⁸	N=60	Income	Healthier Market Basket	No relationship, Statistically non-significant
	Analytic N = full-service grocery stores across 9 parishes Median HH income: \$45,392 African American population: 39%			Price(Ln) of Nutrient-dense foods Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=50, R ² : 0.184, Prob>F: 0.070 Coefficient (SE) Income(Ln): 0.143 (0.138), p>0.10
			Unhealthy food price	Direct relationship, Statistically significant
				Price(Ln) of Energy-dense foods, Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=40, R ² : 0.596, Prob>F: 0.000 Coefficient (SE) Income(Ln): -0.237 (0.131), p≤0.10 [10% increase in income was associated with a 2.37% decrease in price of energy-dense foods]

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Healthy to unhealthy ratio	Direct relationship (bread:cakes, potatoes:cakes, oatmeal:cakes, oatmeal:cola) Inverse relationship (milk:cola, bananas:cola, bananas:chips)
				Income was significant (p≤0.10) for 7 (26%) of the 45 regressions for nutrient-dense/energy-dense pricing ratios. Models adjusted for Black, High or Low real estate value, urban, chain, supercenter, services, store size, and competition.
				4 regressions (15%) indicated that higher income resulted in relatively higher prices for nutrient-dense foods relative to energy-dense foods: whole-wheat bread, potatoes, and oatmeal, all relative to snack cakes, and oatmeal relative to cola.
				3 regressions (11%) indicated that higher income resulted in relatively lower prices for nutrient-dense foods relative to energy-dense foods: skim milk and bananas relative to cola and bananas relative to potato chips.
				When the nutrient-dense market basket /energy-dense market basket cost ratio was analyzed, income was non-significant.
			Bananas	No relationship, Statistically non-significant
				Price(Ln) of bananas (1 lb) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=59, R ² : 0.128, Prob>F: 0.008 Coefficient (SE)
			Bread	Income(Ln): -0.212 (0.237), p>0.10 No relationship, Statistically non-significant
				Price(Ln) of whole wheat bread (20 oz) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=58, R ² : 0.220, Prob>F: 0.036 Coefficient (SE) Income(Ln): 0.167 (0.257), p>0.10


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Broccoli	No relationship, Statistically non-significant
				Price(Ln) of broccoli (1 lb) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=59, R ² : 0.424, Prob>F: 0.000 Coefficient (SE) Income(Ln): 0.207 (0.185), p>0.10
			Chips	Direct relationship, Statistically significant
				Price(Ln) of potato chips (12 oz) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=57, R ² : 0.486, Prob>F: 0.000 Coefficient (SE) Income(Ln): 0.543 (0.215), p<0.05 [10% increase in income was associated with a 5.43% increase in price of potato chips]
			Ice cream	No relationship, Statistically non-significant
				Price(Ln) of ice cream (0.5 gal) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=59, R ² : 0.217, Prob>F: 0.018 Coefficient (SE) Income(Ln): 0.121 (0.186), p>0.10
			Milk	No relationship, Statistically non-significant
				Price(Ln) of skim milk (1 gal) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=59, R ² : 0.326, Prob>F: 0.001 Coefficient (SE) Income(Ln): 0.117 (0.087), p>0.10
			Oatmeal	No relationship, Statistically non-significant
				Price(Ln) of oatmeal (18 oz) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=58, R ² : 0.206, Prob>F: 0.006 Coefficient (SE) Income(Ln): 0.401 (0.307), p>0.10

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Oranges	No relationship, Statistically non-significant
				Price(Ln) of oranges (1 lb) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=58, R ² : 0.358, Prob>F: 0.000 Coefficient (SE) Income(Ln): 0.225 (0.204), p>0.10
			Soda	No relationship, Statistically non-significant
				Price(Ln) of cola (2 L) Regression (adjusted for Black, real estate value, urban, chain, supercenter, services, store size, competition), N=58, R ² : 0.488, Prob>F: 0.000 Coefficient (SE) Income(Ln): 0.082 (0.225), p>0.10
Gosliner, 2018 ¹⁹	N=1474	Geographic location	Apples	Inverse relationship, Statistically significant
	Analytic N=1474 stores in 470 unique census tracts within 225 low-income neighborhoods in cities and towns across 44 California counties.	Low-income neighborhoods County average		Average lowest price of apples (\$/lb) by store type Mean (SD, range), Relative price difference from county chain supermarket average, Statistical test NR Large groceries (n=218): \$1.17 (0.39, 0.66-2.99), 44% Small markets (n=312): \$1.18 (0.37, 0.63-2.59), 53% Convenience stores (n=130): \$1.58 (0.50, 0.69-2.80), 110%
			Bananas	Inverse relationship, Statistically significant
				Average lowest price of bananas (\$/lb) by store type Mean (SD, range), Relative price difference from county chain supermarket average, Statistical test NR Large groceries (n=218): \$0.70 (0.16, 0.49-1.49), 15% Small markets (n=336): \$0.85 (0.31, 0.49-2.19), 39% Convenience stores (n=150): \$1.30 (0.46, 0.49-2.19), 115%
			Broccoli	No relationship, Statistically non-significant
				Average lowest price of broccoli (\$/lb) by store type Mean (SD, range), Relative price difference from county chain supermarket average, Statistical test NR Large groceries (n=199): \$1.30 (0.49, 0.68-3.19), 1% Small markets (n=142): \$1.33 (0.56, 0.68-3.18), 6% Convenience stores: Available in too few stores for inclusion

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Cabbage	No relationship, Statistically non-significant
				Average lowest price of cabbage (\$/lb) by store type
				Mean (SD, range), Relative price difference from county chain
				supermarket average, Statistical test NR
				Large groceries (n=172): \$0.74 (0.27, 0.38-1.59) 0%
				Small markets (n=261): \$0.66 (0.26, 0.34-1.50), -1%
				Convenience stores: Available in too few stores for inclusion
			Carrots	Inverse relationship, Statistically significant
				Average lowest price of carrots (\$/lb) by store type
				Mean (SD, range), Relative price difference from county chain
				supermarket average, Statistical test NR
				Large groceries (n=179): \$0.84 (0.33, 0.50-2.14), 33%
				Small markets (n=242): \$0.91 (0.37, 0.50-2.20), 43%
				Convenience stores (n=24): \$1.22 (0.58, 0.50-2.00), 102%
			Oranges	Inverse relationship, Statistically significant
				Average lowest price of oranges (\$/lb) by store type
				Mean (SD, range), Relative price difference from county chain
				supermarket average, Statistical test NR
				Large groceries (n=200): \$0.95 (0.40, 0.48-1.49), 35%
				Small markets (n=249): \$0.88 (0.41, 0.47-2.20), 27%
				Convenience stores (n=88): \$1.36 (0.59, 0.50-2.20), 107%
			Tomatoes	Inverse relationship, Statistically significant
				Average lowest price of tomatoes (\$/lb) by store type
				Mean (SD, range), Relative price difference from county chain
				supermarket average, Statistical test NR
				Large groceries (n=197): \$1.21 (0.45, 0.59-2.66), 13%
				Small markets (n=311): \$1.12 (0.41, 0.59-2.79), 6%
				Convenience stores (n=57): \$1.21 (0.38, 0.69-2.19), 23%

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Hardin-Fanning, 2015 ²⁰	N=4 Analytic N is number of counties 4 counties compared with 1 store/county All groceries were regional or national chain stores of similar size and food product variety	Geographic location FD-HP U-MP U-LP HP	USDA Market Basket	Inverse relationship (healthier foods), Statistically significant Mean price/serving, repeated measures ANOVA (adjusted for month and ONQI score (fixed effects) and food item identifier (random effect)) County: F(3,1365) = 22.9, p<0.0001 County x Month: p=0.4 Mean price/serving, repeated measures ANOVA (adjusted for month and quartile x month (fixed effects) and food item identifier (random effect)) County: F(3,1347) = 24.5, p<0.0001 County x Month: p>0.0005 ONQI quartile x County: F(9,1347) = 6.7, p<0.0001 Mean price/serving, Post-hoc analysis FD-HP (lower per capita income): \$0.40 vs. U-MP and U-LP, p<0.0001; vs. HP, p=0.0002 U-MP and U-LP (higher per capita income; average): \$0.36
Hardin-Fanning, 2017 ²¹	N=15 Analytic N is number of counties 15 counties compared with 1 store/county All groceries were regional or national chain stores of similar size and food product variety	Geographic location • Least healthy counties (highest average poverty rates) • Moderately healthy counties (lower average poverty rates) • Most healthy counties (lower average poverty rates)	USDA Market Basket	Inverse relationship, Statistically significant GEE Model, Price per serving across health ranking groups, adjusted for ONQI quartile, county population, Appalachian status, and multiple measurements per county. Chi-squared: 12, P=0.003 Post-hoc analysis of pairwise differences, mean price/serving: Least healthy (highest poverty) \$0.58 Moderately healthy (lower poverty) \$0.53 Most healthy (lower poverty) \$0.50 Relative price per serving (\$) by health tertiles: Least healthy (highest poverty) vs. Most healthy (lower poverty): B = 0.08, SE = 0.02, Z=3.8, P<0.001 Least healthy (highest poverty) vs. Moderately healthy (lower poverty): B = 0.05, SE = 0.02, Z=2.3, P=0.024 Moderately healthy vs. Most healthy, P=NS



Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Hatzenbuehler, 2012 ²²	N=59	Income continuous	TFP Food Basket	No relationship, Statistically non-significant
2012	Analytic N is supermarkets in Baton	Continuous	Dasket	TFP market basket, Ordinary least squares
	Rouge, Louisiana, metropolitan area			Income: B: 0.29, t-value: 0.76, p>0.05
	Mean income: \$40,704 (range:			R ² : 0.3250, Model F-value: 4.10, p<0.01
	\$17,170-77,668)			Adjusted for population density, household size, chain,
	Mean household size: 2.61 (range:			supercenter, services, store size, Black, other minority
	1.87-3.08)			
	Mean % Black: 32.53% (0.50-			
	97.00%)			
	Mean % other minority: 4.55% (1.06-11.96%)			
			2005 DGA Market Basket	No relationship, Statistically non-significant
			mamor zachor	Stewart DGA market basket, Ordinary least squares
				Income: B: 0.52, t-value: 1.50, p>0.05
				R ² : 0.3655, Model F-value: 4.71, p<0.01
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
			Dairy	Direct relationship (2005 DGA), Statistically significant No relationship (TFP), Statistically non-significant
				Low-fat dairy products for the Stewart 2005 DGA market basket
				Ordinary least squares
				Income: B: 0.17, t-value: 2.19, p<0.05
				R ² : 0.2407, Model F-value: 3.04, p<0.01
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
				Low-fat dairy products for the TFP market basket
				Ordinary least squares
				Income: B: 0.06, t-value: 1.43, p>0.05
				R ² : 0.1491, Model F-value: 2.13, p<0.05
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority

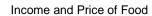
USDA	United States Department of
	Agriculture

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Fruit	Direct relationship (2005 DGA), Statistically significant No relationship (TFP), Statistically non-significant
				Fruit for the Stewart 2005 DGA market basket
				Ordinary least squares
				Income: B: 0.13, t-value: 2.55, p<0.05 R ² : 0.3778, Model F-value: 4.91, p<0.01
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
				Fruit for the TFP market basket
				Ordinary least squares
				Income: B: 0.23, t-value: 1.52, p>0.05
				R ² : 0.2893, Model F-value: 3.62, p<0.01 Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
			Greens	No relationship, Statistically non-significant
				Dark green vegetables for the Stewart 2005 DGA market basket
				Ordinary least squares
				Income: B: 0.02, t-value: 1.00, p>0.05 R ² : 0.1433, Model F-value: 2.08, p<0.05
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
				Dark green vegetables for the TFP market basket
				Ordinary least squares
				Income: B: 0.00, t-value: 0.87, p>0.05
				R ² : 0.1135, Model F-value: 1.83, p>0.05
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority

USDA	United States Department of Agriculture
	Agriculture

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Whole grains	No relationship, Statistically non-significant
				Whole grains for the Stewart 2005 DGA market basket
				Ordinary least squares
				Income: B: -0.01, t-value: -0.17, p>0.05
				R ² : 0.1784, Model F-value: 2.40, p<0.05
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
				Whole grains for the TFP market basket
				Ordinary least squares
				Income: B: 0.00, t-value: 0.35, p>0.05
				R ² : 0.1524, Model F-value: 2.16, p<0.05
				Adjusted for population density, household size, chain,
				supercenter, services, store size, Black, other minority
Hayes, 2000 ²³	N=57	Income • Poor	Market basket	Direct relationship, Statistically non-significant
	Analytic N is supermarkets identified	 Middle 		Mean (SE) total cost in logarithms of market basket, weighted by
	by the Food and Safety Inspection	 Upper 		expenditure-shares, Mean difference
	Report:			Poor: 3.955 (0.008) or \$52.20
	Poor: n=21 stores, 10 zip codes			Middle: 3.968 (0.013) or \$52.88
	Middle: n=14 stores, 7 zip codes			Upper: 3.971 (0.014) or \$53.04
	Upper: n=22 stores, 11 zip codes			Poor-upper difference: -0.016 (0.016) or -\$0.84
	NYC consists of New York, Bronx, Kings, Queens, Richmond, and			P=NS
	Westchester co			Mean (SE) total cost of market basket in logarithms, unweighted Poor: 3.925 (0.008) or \$50.65
				Middle: 3.938 (0.014) or \$51.32
				Upper: 3.942 (0.015) or \$51.52
				Poor-upper difference: -0.016 (0.017) or -\$0.87
				P=NS
			Apples	Direct relationship, Statistically significant
				Mean (SE) price in logarithms of Apples, Mean difference
				Poor: -0.120 (0.032) or \$0.89
				Middle: 0.058 (0.032) or \$1.06
				Upper: 0.082 (0.028) or \$1.09
				Poor-upper difference: -0.202 (0.043) or -\$0.20
				Significantly different

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Bananas	Direct relationship, Statistically significant
				Mean (SE) price in logarithms of Bananas, Mean difference Poor: -0.799 (0.038) or \$0.45
				Middle: -0.854 (0.067) or \$0.43
				Upper: -0.636 (0.049) or \$0.53 Poor-upper difference: -0.163 (0.062) or \$0.08
				Significantly different
			Bread	Direct relationship, Statistically non-significant
				Mean (SE) price in logarithms of Bread, Mean difference Poor: 0.468 (0.023) or \$1.60
				Middle: 0.538 (0.12) or \$1.71
				Upper: 0.504 (0.014) or \$1.66
				Poor-upper difference: -0.036 (0.027) or -\$0.06 P=NS
			Breakfast cereals	Inverse relationship, Statistically significant
				Mean (SE) price in logarithms of Cereal, Mean difference
				Poor: 0.927 (0.005) or \$2.53
				Middle: 0.926 (0.016) or \$2.52
				Upper: 0.876 (0.009) or \$2.40 Poor-upper difference: 0.052 (0.010) or \$0.13
				Significantly different
			Butter	Inverse relationship, Statistically non-significant
				Mean (SE) price in logarithms of Butter, Mean difference
				Poor: 1.106 (0.009) or \$3.02
				Middle: 1.060 (0.030) or \$2.89
				Upper: 1.068 (0.027) or \$2.91
				Poor-upper difference: 0.037 (0.028) or \$0.11 P=NS
			Cheese	Inverse relationship, Statistically non-significant
				Mean (SE) price in logarithms of Cheese, Mean difference
				Poor: 1.180 (0.21) or \$3.25
				Middle: 1.166 (0.046) or \$3.21
				Upper: 1.152 (0.027) or \$3.16
				Poor-upper difference: 0.028 (0.034) or \$0.09
				P=NS


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Chicken	Direct relationship, Statistically non-significant
				Mean price in logarithms of Chicken, Mean difference Poor: 0.788 (0.044) or \$2.20 Middle: 0.755 (0.069) or \$2.13 Upper: 0.862 (0.052) or \$2.37 Poor-upper difference: -0.074 (0.068) or -\$0.17 P=NS
			Cooking oil	No relationship, Statistically non-significant
				Mean (SE) price in logarithms of Oil, Mean difference Poor: 0.533 (0.005) or \$1.70 Middle: 0.570 (0.017) or \$1.77 Upper: 0.542 (0.009) or \$1.72 Poor-upper difference: -0.009 (0.011) or \$0.02 P=NS
			Eggs	Direct relationship, Statistically non-significant
				Mean (SE) price in logarithms of Eggs, Mean difference Poor: 0.192 (0.020) or \$1.21 Middle: 0.222 (0.035) or \$1.25 Upper: 0.285 (0.039) or \$1.33 Poor-upper difference: -0.074 (0.044) or -\$0.12 P=NS
			Flour	Direct relationship, Statistically non-significant
				Mean (SE) price in logarithms of Flour, Mean difference Poor: 0.648 (0.046) or \$1.91 Middle: 0.700 (0.024) or \$2.01 Upper: 0.676 (0.026) or \$1.97 Poor-upper difference: -0.029 (0.052) or -\$0.06 P=NS
			Ground beef	Direct relationship, Statistically non-significant
				Mean (SE) price in logarithms of Ground beef, Mean difference Poor: 1.444 (0.042) or \$4.24 Middle: 1.490 (0.077) or \$4.44 Upper: 1.530 (0.044) or \$4.62 Poor-upper difference: -0.086 (0.061) or \$0.38 P=NS

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Juice	Direct relationship, Statistically significant
				Mean (SE) price in logarithms of Orange Juice, Mean difference Poor: 0.919 (0.026) or \$2.51
				Middle: 0.915 (0.031) or \$2.50
				Upper: 1.011 (0.022) or \$2.75 Poor-upper difference: -0.092 (0.034) or -\$0.24
				Significantly different
			Milk	No relationship, Statistically non-significant
				Mean (SE) price in logarithms of Milk, Mean difference Poor: 0.932 (0.008) or \$2.54 Middle: 0.885 (0.029) or \$2.42
				Upper: 0.948 (0.020) or \$2.58
				Poor-upper difference: -0.015 (0.022) or -\$0.04 P=NS
			Pasta	No relationship, Statistically non-significant
				Mean (SE) price in logarithms of Spaghetti, Mean difference Poor: -0.025 (0.044) or \$0.98
				Middle: 0.071 (0.039) or \$1.07
				Upper: 0.002 (0.032) or \$1.00 Poor-upper difference: -0.027 (0.054) or \$0.02
				P=NS
			Rice	No relationship, Statistically non-significant
				Mean (SE) price in logarithms of Long-Grain Rice, Mean difference
				Poor: 1.104 (0.017) or \$3.02
				Middle: 1.116 (0.013) or \$3.05
				Upper: 1.088 (0.018) or \$2.97
				Poor-upper difference: 0.016 (0.025) or \$0.05 P=NS
			Sugar	Direct relationship, Statistically non-significant
				Mean (SE) price in logarithms of Sugar, Mean difference
				Poor: 0.957 (0.008) or \$2.60
				Middle: 0.895 (0.025) or \$2.45
				Upper: 0.990 (0.019) or \$2.69 Poor-upper difference: -0.033 (0.020) or -\$0.09
				P=NS

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Tuna	No relationship, Statistically non-significant
				Mean (SE) price in logarithms of Tuna, Mean difference Poor: -0.059 (0.026) or \$0.94 Middle: 0.034 (0.058) or \$1.03 Upper: -0.051 (0.031) or \$0.95
				Poor-upper difference: -0.008 (0.040) or \$0.01 P=NS
Jetter, 2006 ²⁴	N=25	Income Continuous and	TFP Food Basket	Direct relationship (continuous), Statistically significant No relationship (lower vs. higher), Statistically non-
	Analytic N = stores 12 stores in Los Angeles; 13 stores	low vs. higher		significant
	in Sacramento			Cost of a market basket (either TFP or Healthier) Regression model (adjusted for: store type, fiber (ln), fat (ln), store density, store access)
				Coefficient Low-income area: -0.001, p>0.1
				Income (In; continuous): 0.079, p<0.05
Jewell, 2019 ²⁵	N=21	Geographic location	Fruits and Vegetables	Direct relationship, Statistically non-significant
	Analytic N is neighborhoods.	• CX3	J	Median (IQR) produce price, Kruskal-Wallis, p=0.06
	Stores: N=108 from 710 census tracts	 Adjacent 		CX3 neighborhoods: \$1.05 (0.63) Adjacent neighborhoods: \$1.50 (0.97)
Kern, 2016 ²⁶	N=1743	SES proxy Neighborhood SES	Milk	Direct relationship, Statistically significant
	Analytic N is stores (large chain supermarkets and superstores)	index		Hierarchical model of price of milk (\$/12 fl. oz) per neighborhood SES z-score
	across 41 states and 1694 census blocks.			Estimate (95% CI) Adjusted (race, age, region, urbanicity, supermarket density,
	DIOCKS.			toilet paper price, soda price, county and state): 0.0149 (0.0104, 0.0193), p<0.0001
				Bivariate regression model of price of milk (\$/12 fl. oz) per neighborhood SES z-score, p<0.0001 Mean (SD)
				Lowest SES tertile (least advantaged, n=581): \$0.60 (0.11) Middle SES tertile (n=582): \$0.61 (0.11) Highest SES tertile (most advantaged, n=580): \$0.65 (0.10)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Soda	Direct relationship, Statistically significant
				Hierarchical model of price of soda (\$/12 fl. oz) per neighborhood SES z-score Estimate (95% CI) Adjusted (race, age, region, urbanicity, supermarket density, toilet paper price, milk price, county and state): 0.0024 (0.0012, 0.0035), p<0.0001
				Bivariate regression model of price of soda (\$/12 fl. oz) per neighborhood SES z-score, p<0.0001 Mean (SD) Lowest SES tertile (least advantaged, n=581): \$0.23 (0.02) Middle SES tertile (n=582): \$0.22 (0.02)
Kern, 2017 ²⁷	N=1953	SES proxy	Healthy food	Highest SES tertile (most advantaged, n=580): \$0.23 (0.02) Direct relationship (unadjusted), Statistically significant
	Analytic N is stores	Neighborhood SES index	price	Estimate (95%): Unadjusted (county and state): 0.00452 (0.0034, 0.0056), p<0.0001
				Partially adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, county and state): 0.00085 (-0.00027, 0.00198), p=0.1370
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, race, county and state): 0.00090 (-0.0007, 0.0025), p= 0.2836;
				Price of food by Neighborhood SES quintile, mean (SD): Lowest quintile (least advantaged): \$0.581 (0.047) Second quintile: \$0.581 (0.048) Middle quintile: \$0.589 (0.053) Fourth quintile: \$0.590 (0.057) Highest quintile (most advantaged): \$0.611 (0.068)


Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
	Characteristics		Unhealthy food price	Direct relationship (unadjusted), Statistically significant Inverse relationship (partially adjusted), Statistically significant
				Estimate (95% CI) Unadjusted (county and state): 0.00057 (0.0001, 0.0011), p=0.0234
				Partially adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, county and state): -0.00102 (-0.00148, -0.00056), p<0.0001
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, race, county and state): 0.00055 (-0.0001, 0.0012), p=0.1110
				Price of food by Neighborhood SES quintile, mean (SD): Lowest quintile (least advantaged): \$0.299 (0.019) Second quintile: \$0.295 (0.020) Middle quintile: \$0.295 (0.017) Fourth quintile: \$0.294 (0.016) Highest quintile (most advantaged): \$0.306 (\$0.039)
			Dairy	Inverse relationship, Statistically significant
				Estimate (95% CI) Unadjusted (county and state): -0.01323 (-0.0153, -0.0112), p<0.0001
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, race, county and state): -0.01836 (-0.0215, -0.0152), p<0.0001
			Fruit Juice and Frozen Vegetables	Direct relationship, Statistically significant Estimate (95% CI) Unadjusted (county and state): 0.01386 (0.0126, 0.0151), p<0.0001
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, and race, county and state): 0.01096 (0.0091, 0.0128), p<0.0001

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Salty Snacks	Inverse relationship, Statistically significant
				Estimate (95% CI) Unadjusted (county and state): -0.00216 (-0.0025, -0.0018), p<0.0001
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, race, county and state): -0.00125 (-0.0018 -0.0007), p<0.0001
			Soda	No relationship, Statistically non-significant
				Estimate (95% CI) Unadjusted (county and state): 0.00051 (-0.0001, 0.0011), p=0.0937
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, either race, county and state): 0.00065 (-0.0003, 0.0016), p=0.1682
			Sweets	Direct relationship, Statistically significant
				Estimate (95% CI) Unadjusted (county and state): 0.00267 (0.0018, 0.0035), p<0.0001
				Fully adjusted (age, region, urbanicity, population density, supermarket density, toilet paper price, race, county and state): 0.00153 (0.0005, 0.0026), p=0.0054
Leider, 2019 ²⁸	N=11767	Income Continuous (units	Energy drinks	No relationship, Statistically non-significant
	Analytic N is product-level observations from 581 stores	of \$10k)		Energy drinks (n=2,276) Beta coefficient (95% CI), Multiple linear regression Median HH income (units of \$10k): 0.02 (-0.05, 0.10), p>0.05 % population <125% poverty level: 0.02 (-0.00, 0.04), p>0.05 Adjusted for beverage size, sale status, store type, race/ethnicity, site
			Juice	No relationship, Statistically non-significant
				Juice drinks (non-100% juice, n=886) Beta coefficient (95% CI), Multiple linear regression Median HH income (units of \$10k): 0.02 (-0.03, 0.07), p>0.05 % population <125% poverty level: 0.00 (-0.01, 0.02), p>0.05 Adjusted for beverage size, sale status, store type, race/ethnicity, site



Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Ready-to- drink tea and	No relationship, Statistically non-significant
			coffee	Ready-to-drink tea and coffee (n=1,454) Beta coefficient (95% CI), Multiple linear regression Median HH income (units of \$10k): 0.02 (-0.09, 0.12), p>0.05 % population <125% poverty level: -0.02 (-0.05, 0.00), p>0.05 Adjusted for beverage size, sale status, store type, race/ethnicity, site
			Soda	Direct relationship, Statistically significant
				Soda (n=5,220) Beta coefficient (95% CI), Multivariable linear regression Median HH income (units of \$10k): 0.02 (0.00, 0.04), p<0.05 % population <125% poverty level: 0.00 (-0.01, 0.00), p>0.05 Adjusted for beverage size, sale status, store type, race/ethnicity, site
			Sports drinks	No relationship, Statistically non-significant
				Sports drinks (n=1,931) Beta coefficient (95% CI), Multivariable linear regression Median HH income (units of \$10k): 0.00 (-0.03, 0.03), p>0.05 % population <125% poverty level: 0.00 (-0.00, 0.01), p>0.05 Adjusted for beverage size, sale status, store type, race/ethnicity, site
			Sugar-	No relationship, Statistically non-significant
			sweetened beverages	All sugar-sweetened beverages (N=11,767) Beta coefficient (95% CI), Multivariable linear regression Median HH income (units of \$10k): 0.02 (-0.01, 0.04), p>0.05 % population <125% poverty level: 0.00 (-0.01, 0.01), p>0.05 Adjusted for beverage category, beverage size, sale status, store type, race/ethnicity, site
Leone, 2011 ²⁹	N=73	Income • Low	Fruits and Vegetables	No relationship, Statistically non-significant
	Analytic N is stores County population was 239,452. Race: White 66.4%, Black 29.1%, other race 4.5% 18.2% lived below poverty	• Low • High	veyetables	Neighborhood characteristics (including income) were not significantly related to the price of more healthful foods.
	, , , , , , , , , , , , , , , , , , ,		Bread	No relationship, Statistically non-significant
				Neighborhood characteristics (including income) were not significantly related to the price of whole-wheat bread.

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Milk	No relationship, Statistically non-significant
				Neighborhood characteristics (including income) were not significantly related to the price of low-fat milk.
Lopez-Class, 2010 ³⁰	N=32	Geographic location	Apples	Inverse relationship, Statistically significant
2010 ³⁰	Analytic N is stores Latino and surrounding neighborhoods in a city located in East Central New York, on the Mohawk River. Population of ~18,000 with 16% Latino, of those 72% are Puerto- Rican. City is divided into four geographic areas: Cork Hill, South Side, the Projects, and East End	 Latino neighborhood Non-Latino neighborhood 		Apple, medium Mean price (SD), range, t-test, p=0.038 Latino neighborhood: \$0.39 (0.07), 0.30-0.49 Non-Latino neighborhood: \$0.28 (0.08), 0.15-0.36
			Bread	Inverse relationship, Statistically significant
				High-fiber bread (≥2g per slice), 24 oz Mean price (SD), range, t-test, p=0.028 Latino neighborhood: \$3.89 (only mean available) Non-Latino neighborhood: \$2.72 (0.94), 1.44-3.84
			Cucumbers	Inverse relationship, Statistically significant
				Cucumber, medium Mean price (SD), range, t-test, p=0.041 Latino neighborhood: \$0.54 (0.05), 0.49-0.59 Non-Latino neighborhood: \$0.39 (0.09), 0.33-0.49

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Milk	No relationship, Statistically non-significant
				Low-fat (≤1% milk), quart
				Mean price (SD), range, t-test, p=0.081
				Latino neighborhood: \$1.08 (0.16), 0.95-1.29
				Non-Latino neighborhood: \$0.93 (0.09), 0.80-0.99
				Low-fat (≤1% milk), half gallon
				Mean price (SD), range, p=0.746
				Latino neighborhood: \$1.51 (0.19), 1.09-1.75
				Non-Latino neighborhood: \$1.54 (0.20), 1.29-1.99
				Low-fat (≤1% milk), gallon
				Mean price (SD), range, p=0.888
				Latino neighborhood: \$2.59 (0.40), 1.99-2.79
				Non-Latino neighborhood: \$2.62 (0.31), 2.25-2.99
			Oranges	Inverse relationship, Statistically non-significant
				Orange, medium
				Mean price (SD), range, t-test, p=0.267
				Latino neighborhood: \$0.54 (0.18), 0.33-0.75
				Non-Latino neighborhood: \$ 0.43 (0.09), 0.32-0.50
			Tomatoes	No relationship, Statistically non-significant
				Tomato, medium
				Mean price (SD), range, t-test, p=0.315
				Latino neighborhood: \$0.33 (0.11), 0.11-0.40
				Non-Latino neighborhood: \$0.51 (0.29), 0.24-0.99

Rimkus, 2015³¹

N=8793

Analytic N = food stores across 468 communities spanning 46 states Communities observed were defined by school enrollment zones for students surveyed as part of the Monitoring the Future study and were nationally representative of where 8th, 10th, and 12th grade public school students reside.

Income

- High (ref)
- Medium
- Low

Milk

Inverse relationship (various), Statistically significant No relationship, Statistically non-significant

All stores

Ordinary least squares regression, adjusted for: US Census Division, year of data collection, store type, race, ethnicity, urbanicity

Beta coefficient (SE) of whole milk prices

High income: Reference

Medium income: 0.067 (0.043), p>0.05 Low income: 0.091 (0.042), p<0.05

Beta coefficient (SE) of 2% milk prices

High income: Reference

Medium income: 0.064 (0.041), p>0.05 Low income: 0.075 (0.041), p>0.05

Beta coefficient (SE) of 1% milk prices

High income: Reference

Medium income: -0.017 (0.046), p>0.05 Low income: -0.006 (0.055), p>0.05

Beta coefficient (SE) of skim milk prices

High income: Reference

Medium income: -0.008 (0.045), p>0.05 Low income: -0.0034 (0.047), p>0.05

Supermarkets

Ordinary least squares regression, adjusted for: US Census Division, year of data collection, race, ethnicity, urbanicity

Beta coefficient (SE) of whole milk prices

High income: Reference

Medium income: 0.091 (0.060), p>0.05 Low income: 0.069 (0.067), p>0.05

Beta coefficient (SE) of 2% milk prices

High income: Reference

Medium income: 0.067 (0.063), p>0.05 Low income: 0.032 (0.067), p>0.05

Beta coefficient (SE) of 1% milk prices

High income: Reference

Medium income: 0.084 (0.064), p>0.05

Low income: 0.036 (0.067), p>0.05

Beta coefficient (SE) of skim milk prices

High income: Reference

Medium income: 0.069 (0.068), p>0.05 Low income: 0.021 (0.070), p>0.05

Grocery stores

Ordinary least squares regression, adjusted for: US Census Division, year of data collection, race, ethnicity, urbanicity

Beta coefficient (SE) of whole milk prices

High income: Reference

Medium income: 0.058 (0.085), p>0.05 Low income: 0.117 (0.098), p>0.05

Beta coefficient (SE) of 2% milk prices

High income: Reference

Medium income: 0.073 (0.086), p>0.05 Low income: 0.122 (0.089), p>0.05

Beta coefficient (SE) of 1% milk prices

High income: Reference

Medium income: 0.217 (0.101), p<0.05 Low income: 0.212 (0.106), p<0.05

Beta coefficient (SE) of skim milk prices

High income: Reference

Medium income: 0.210 (0.108), p>0.05 Low income: 0.153 (0.111), p>0.05

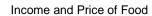
Limited-service stores

Ordinary least squares regression, adjusted for: US Census Division, year of data collection, race, ethnicity, urbanicity

Beta coefficient (SE) of whole milk prices

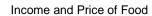
High income: Reference

Medium income: 0.064 (0.045), p>0.05 Low income: 0.092 (0.041), p<0.05


Beta coefficient (SE) of 2% milk prices

High income: Reference

Medium income: 0.061 (0.044), p>0.05 Low income: 0.079 (0.043), p>0.05



Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
				Beta coefficient (SE) of 1% milk prices
				High income: Reference
				Medium income: -0.085 (0.051), p>0.05
				Low income: -0.033 (0.064), p>0.05
				Beta coefficient (SE) of skim milk prices
				High income: Reference
				Medium income: -0.060 (0.046), p>0.05
				Low income: -0.075 (0.050), p>0.05
Smith, 2013 ³²	N=28	Geographic location	Apples	No relationship, Statistically non-significant
	Analytic N = 28 convenience stores	 Lower income 		Price of apples
	from 2 neighborhoods in Bexar	Higher income		Mean (SD), t-test, p=0.818
	County, TX.	- riigilor iriooilio		ZIP A (lower income, n=5): \$1.12 (0.94)
	ZIP A and ZIP B has the highest and			ZIP B (higher income, n=5): \$1.24 (0.53)
	lowest city-levels of adults clinically diagnosed with diabetes.			
			Bananas	Direct relationship, Statistically significant
				Price of bananas
				Mean (SD), t-test, p=0.015
				ZIP A (lower income, n=5): \$0.43 (0.15)
				ZIP B (higher income, n=6): \$1.13 (0.43)
			Bread	Direct relationship (White bread), Statistically significant No relationship (Whole grain bread), Statistically non- significant
				Price of whole grain bread
				Mean (SD), t-test, p=0.203
				ZIP A (lower income, n=3): \$2.01 (0.77)
				ZIP B (higher income, n=7): \$2.83 (0.17)
				Price of white bread
				Mean (SD), t-test, p=0.001
				ZIP A (n=15): \$2.06 (0.39)
				ZIP B (n=8): \$2.65 (0.32)
			Broccoli	Direct relationship, Statistically significant
				Price of broccoli
				Mean (SD), t-test, p<0.001
				ZIP A (lower income, n=1): \$0.07 (0.30)
				ZIP B (higher income, n=1): \$2.99 (0.00)



Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Chips	No relationship, Statistically non-significant
				Price of baked potato chips
				Mean (SD), t-test, p=NR
				ZIP A (lower income, n=3): \$0.99 (0.00)
				ZIP B (higher income, n=8): \$0.99 (0.00)
				Price of regular potato chips
				Mean (SD), t-test, p=0.868
				ZIP A (n=18): \$2.22 (1.43)
				ZIP B (n=9): \$2.32 (1.58)
			Cucumbers	Direct relationship, Statistically significant
				Price of cucumbers
				Mean (SD), t-test, p<0.001
				ZIP A (lower income, n=3): \$0.14 (0.34)
				ZIP B (higher income, n=1): \$2.99 (0.00)
			Juice	No relationship, Statistically non-significant
				Price of 100% juice (no sugar added; 15.2 oz)
				Mean (SD), t-test, p=0.071
				ZIP A (lower income, n=13): \$1.66 (0.19)
				ZIP B (higher income, n=7): \$2.00 (0.58)
				Price of juice drink (sugar added: 15.2 oz)
				Mean (SD), t-test, p=0.487
				ZIP A (n=6): \$1.55 (0.15)
				ZIP B (n=5): \$1.63 (0.23)
			Melons	No relationship, Statistically non-significant
				Price of watermelon
				Mean (SD), t-test, p=0.873
				ZIP A (lower income, n=2): \$1.99 (0.00)
				ZIP B (higher income, n=5): \$2.19 (1.09)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Milk	No relationship, Statistically non-significant
				Price of milk: low fat, skim, or 1% (half gallon)
				Mean (SD), t-test, p=0.130
				ZIP A (lower income, n=2): \$3.19 (0.28)
				ZIP B (higher income, n=1): \$2.29 (0.42)
				Price of milk: 2% (half gallon)
				Mean (SD), t-test, p=0.852
				ZIP A (n=5): \$3.29 (0.27)
				ZIP B (n=8): \$3.14 (1.30)
			Oranges	Direct relationship, Statistically significant
				Price of oranges
				Mean (SD), t-test, p=0.018
				ZIP A (lower income, n=3): \$0.45 (0.09)
				ZIP B (higher income, n=4): \$0.90 (0.21)
			Soda	Direct relationship (diet cola), Statistically significant
				No relationship (regular cola), Statistically non-significant
				Price of diet cola (20 oz)
				Mean (SD), t-test, p=0.044
				ZIP A (lower income, n=19): \$1.35 (0.13)
				ZIP B (higher income, n=9): \$1.45 (0.05)
				Price of regular cola (20 oz)
				Mean (SD), t-test, p=0.060
				ZIP A (n=19): \$1.37 (0.11)
				ZIP B (n=9): \$1.45 (0.05)
			Tomatoes	Direct relationship, Statistically significant
				Price of tomatoes
				Mean (SD), t-test, p=0.010
				ZIP A (lower income, n=7): \$0.18 (0.27)
				ZIP B (higher income, n=1): \$0.99 (0.00)

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Stewart, 2011 ³³	N=7143	Income continuous	Salty Snacks	Direct relationship, Statistically significant
	N is households who participated in	001111111111111111111111111111111111111		Salty snacks
	the Nielsen-run panel for all 12			Coefficient (SE), R^2=0.05
	months of 2006			Household income: 0.005 (0.0015), p<0.01
	Nielsen provides a sample weight to			Household income squared: -0.0003 (0.0002), p>0.1
	be nationally representative			Poverty principal component: 0.0005 (0.0004), p>0.1
	Mean household income: \$27,000;			Adjusted for household size, age, education, household includes
	Mean age: 54.9 y; Mean household			child, homemaker in household, race/ethnicity, urbanicity,
	size: 2.32 people; Black: 13%,			poverty, residential community, racial composition of community,
	Hispanic			geographic region (east, south, west)
			Vegetables	Direct relationship, Statistically significant
				Fresh vegetables
				Coefficient (SE), R^2=0.14
				Household income: 0.0293 (0.0372), p<0.01
				Household income squared: -0.0019 (0.0004), p<0.01
				Poverty principal component: -0.0009 (0.0011), p>0.1
				Adjusted for household size, age, education, household includes
				child, homemaker in household, race/ethnicity, urbanicity,
				poverty, residential community, racial composition of community,
				geographic region (east, south, west)
Talukdar, 2008 ³⁴	N=115	Geographic location	Branded foods	Inverse relationship (Richest vs. Poorest), Statistically significant
	Analytic $N = 115$ stores from 17 of	 Richest zip 		
	the 27 zip codes in of Buffalo city	codes (ref)		Relative price index, regression model (adjusted for store type,
	and immediate surrounding suburbs.	 Medium zip 		and distance to competitive environment), Adj R^2 = 0.78
	Homes with ≥Bachelor's degree:	codes		Estimates (SE)
	Richest zip codes: 28.0%	 Poorest zip 		Richest: Reference
	Medium zip codes: 27.1%	codes		Medium: 0.006 (0.008), p>0.1
	Poorest zip codes: 11.6%			Poorest: 0.019 (0.008), p<0.05
			Non-branded foods	No relationship, Statistically non-significant
				Relative price index, regression model (adjusted for store type,
				and distance to competitive environment), Adj R^2 = 0.75
				Estimates (SE)
				Richest: Reference
				Medium: 0.006 (0.009), p>0.1
				Poorest: 0.008 (0.014), p>0.1

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
Winkler, 2019 ³⁵	N=140	SES proxy • Lowest income	Apples	No relationship, Statistically non-significant
	Analytic N = stores	Middle income		Price of Apples (\$/item)
	Small and non-traditional food stores	Highest income		Multivariate regression, adjusted for corporate status
	were randomly selected from lists of	- riigiloot illoomo		Adjusted Mean (95% CI), N=56, p>0.05
	licensed grocery retailers in both			POC dominant (Lowest income): \$0.83 (0.67, 1.00)
	cities. Of 157 eligible stores, 140			Racially mixed (Middle income): \$0.84 (0.75, 0.93)
	agreed to participate			White dominant (Highest income): \$0.92 (0.83, 1.01)
			Bananas	No relationship, Statistically non-significant
				Price of Bananas (\$/item)
				Multivariate regression, adjusted for corporate status
				Adjusted Mean (95% CI), N=64, p>0.05
				POC dominant (Lowest income): \$0.52 (0.44, 0.61)
				Racially mixed (Middle income): \$0.45 (0.41, 0.49)
-				White dominant (Highest income): \$0.51 (0.46, 0.55)
			Lettuce	No relationship, Statistically non-significant
				Price of Lettuce (\$/item)
				Multivariate regression, adjusted for corporate status
				Adjusted Mean (95% CI), N=15, p>0.05
				POC dominant (Lowest income): \$3.21 (1.47, 4.94)
				Racially mixed (Middle income): \$3.37 (2.48, 4.27)
			. .	White dominant (Highest income): \$3.31 (2.71, 3.90)
			Onions	No relationship, Statistically non-significant
				Price of Onions (\$/item)
				Multivariate regression, adjusted for corporate status
				Adjusted Mean (95% CI), N=25, p>0.05
				POC dominant (Lowest income): \$0.68 (0.13, 1.22)
				Racially mixed (Middle income): \$0.70 (0.41, 0.99)
			Orongoo	White dominant (Highest income): \$0.67 (0.38, 0.96) No relationship, Statistically non-significant
			Oranges	No relationship, Statistically non-significant
				Price of Oranges (\$/item)
				Multivariate regression, adjusted for corporate status
				Adjusted Mean (95% CI), N=47, p>0.05
				POC dominant (Lowest income): \$1.25 (1.00, 1.52)
				Racially mixed (Middle income): \$0.84 (0.67, 1.01)
				White dominant (Highest income): \$0.94 (0.76, 1.11)

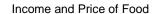
USDA	United States Department of
	Agriculture

Study and Participant Characteristics	Intervention	Outcome(s)	Results
		Tomatoes	No relationship, Statistically non-significant
			Price of Tomatoes (\$/item) Multivariate regression, adjusted for corporate status Adjusted Mean (95% CI), N=18, p>0.05 POC dominant (Lowest income): \$0.79 (0.00, 1.60) Racially mixed (Middle income): \$1.30 (0.68, 1.93) White dominant (Highest income): \$1.06 (0.52, 1.60)
N=364	Income	Fruit	No relationship, Statistically non-significant
Analytic N = 364 WIC vendors in 7 seven northern Illinois counties (DeKalb, DuPage, Kane, Lee, Ogle, Winnebago, west suburban Cook [not including Chicago]). Data were collected annually from each vendor. Analysis included all WIC vendors authorized in 20			Fresh fruit Multivariate regression, adjusted for vendor type, year of data collection, seasonality, population density, % other racial/ethnicity), Adj R^2 =0.25 Coefficient (SE) Neighborhood median HH income (1000s): <-0.01 (0.02), p=0.96 Canned fruit Multivariate regression, adjusted for vendor type, year of data collection, seasonality, population density, % other racial/ethnicity), Adj R^2 =0.17 Coefficient (SE) Neighborhood median HH income (1000s): 0.01 (0.02), p=0.36 Frozen fruit Multivariate regression, adjusted for vendor type, year of data collection, seasonality, population density, % other racial/ethnicity), Adj R^2 =0.29 Coefficient (SE)
	N=364 Analytic N = 364 WIC vendors in 7 seven northern Illinois counties (DeKalb, DuPage, Kane, Lee, Ogle, Winnebago, west suburban Cook [not including Chicago]). Data were collected annually from each vendor. Analysis included all	N=364 Income Analytic N = 364 WIC vendors in 7 seven northern Illinois counties (DeKalb, DuPage, Kane, Lee, Ogle, Winnebago, west suburban Cook [not including Chicago]). Data were collected annually from each vendor. Analysis included all	Characteristics Tomatoes N=364 Income Fruit Analytic N = 364 WIC vendors in 7 seven northern Illinois counties (DeKalb, DuPage, Kane, Lee, Ogle, Winnebago, west suburban Cook [not including Chicago]). Data were collected annually from each vendor. Analysis included all

Income and Price of Food

Article	Study and Participant Characteristics	Intervention	Outcome(s)	Results
			Vegetables	Direct relationship (canned), Statistically significant No relationship (fresh and frozen), Statistically non- significant
				Fresh vegetables Multivariate regression, adjusted for vendor type, year of data collection, seasonality, population density, % other racial/ethnicity), Adj R^2 = 0.35 Coefficient (SE) Neighborhood median HH income (1000s): -0.02 (0.01), p=0.19
				Canned vegetables Multivariate regression, adjusted for vendor type, year of data collection, seasonality, population density, % other racial/ethnicity), Adj R^2 =0.61 Coefficient (SE) Neighborhood median HH income (1000s): 0.03 (0.01), p=0.002
				Frozen vegetables Multivariate regression, adjusted for vendor type, year of data collection, seasonality, population density, % other racial/ethnicity), Adj R^2 =0.26 Coefficient (SE) Neighborhood median HH income (1000s): 0.02 (0.01), p=0.14

^a Abbreviations: ANOVA: Analysis of Variance; CSFII: USDA Continuing Survey of Food Intakes by Individuals; CX3: Communities of Excellence in Nutrition, Physical Activity and Obesity Prevention Project; DGA: Dietary Guidelines for Americans; F&V: Fruits and vegetables; FV-PI: Fruits and Vegetables Price Index; g: gram; gal: gallon; GEE: general estimation equation; HH: household; IQR: interquartile range; lb: pound; Ln: natural log; N: sample size; n/a: not applicable; NR: Not reported; NS: Statistically non-significant; ONQI: overall nutrition quality index; Oz: ounce; pc: piece; PIR: Poverty Income Ratio; POC: person of color; SD: standard deviation; SE: standard error; SEM: standard error of the mean; SES: Socioeconomic status; TFP: Thrifty Food Plan; USDA: United States Department of Agriculture; WIC: Special Supplemental Nutrition Program for Women, Infants, and Children; y: year


Table 1-c. Risk of bias for observational studies examining income and food price^a

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Akbay, 2005 ¹	SERIOUS	NO INFORMATION	SERIOUS	LOW	NO INFORMATION	LOW	MODERATE
Andreyeva, 2008 ²	SERIOUS	LOW	SERIOUS	MODERATE	LOW	LOW	MODERATE
Ard, 2010 ³	MODERATE	LOW	SERIOUS	MODERATE	LOW	LOW	MODERATE
Beydoun, 2008 ⁵	SERIOUS	MODERATE	LOW	LOW	LOW	MODERATE	SERIOUS
Beydoun, 2011 ⁴	SERIOUS	MODERATE	LOW	LOW	LOW	MODERATE	SERIOUS
Block, 2006 ⁶	SERIOUS	LOW	SERIOUS	LOW	MODERATE	LOW	MODERATE
Borja, 2019 ⁷	SERIOUS	LOW	SERIOUS	MODERATE	LOW	LOW	MODERATE
Broda, 2009 ⁸	MODERATE	LOW	LOW	LOW	NO INFORMATION	MODERATE	MODERATE
Cassady, 2007 ⁹	SERIOUS	LOW	SERIOUS	LOW	LOW	LOW	SERIOUS
Chang, 2011 ¹⁰	SERIOUS	LOW	SERIOUS	LOW	LOW	LOW	MODERATE
Chung, 1999 ¹¹	SERIOUS	LOW	SERIOUS	LOW	LOW	LOW	MODERATE
Colabianchi, 2021 ³⁷	MODERATE	LOW	SERIOUS	SERIOUS	LOW	LOW	MODERATE
Cole, 2010 ¹²	SERIOUS	LOW	CRITICAL	LOW	SERIOUS	LOW	CRITICAL
Daepp, 2015 ¹³	SERIOUS	NO INFORMATION	SERIOUS	LOW	SERIOUS	LOW	SERIOUS

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Davis, 2005 ¹⁴	SERIOUS	LOW	LOW	NO INFORMATION	NO INFORMATION	LOW	MODERATE
DeWeese, 2017 ¹⁵	SERIOUS	LOW	SERIOUS	LOW	SERIOUS	LOW	MODERATE
Dunn, 2011 ¹⁶	MODERATE	LOW	SERIOUS	LOW	MODERATE	LOW	MODERATE
French, 2010 ¹⁷	SERIOUS	LOW	MODERATE	LOW	LOW	MODERATE	MODERATE
Gillespie, 2015 ¹⁸	MODERATE	LOW	SERIOUS	LOW	LOW	LOW	SERIOUS
Gosliner, 2018 ¹⁹	SERIOUS	SERIOUS	CRITICAL	LOW	MODERATE	MODERATE	MODERATE
Hardin-Fanning, 2015 ²⁰	SERIOUS	LOW	SERIOUS	LOW	LOW	LOW	SERIOUS
Hardin-Fanning, 2017 ²¹	SERIOUS	LOW	CRITICAL	SERIOUS	LOW	LOW	MODERATE
Hatzenbuehler, 2012 ²²	MODERATE	LOW	SERIOUS	LOW	MODERATE	LOW	MODERATE
Hayes, 2000 ²³	SERIOUS	LOW	SERIOUS	LOW	MODERATE	LOW	MODERATE
Jetter, 2006 ²⁴	SERIOUS	LOW	SERIOUS	MODERATE	LOW	LOW	MODERATE
Jewell, 2019 ²⁵	MODERATE	LOW	SERIOUS	LOW	SERIOUS	LOW	SERIOUS
Kern, 2016 ²⁶	MODERATE	LOW	SERIOUS	LOW	LOW	LOW	SERIOUS
Kern, 2017 ²⁷	MODERATE	LOW	SERIOUS	LOW	LOW	LOW	SERIOUS
Leider, 2019 ²⁸	MODERATE	LOW	SERIOUS	LOW	MODERATE	LOW	SERIOUS

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Leone, 2011 ²⁹	SERIOUS	LOW	SERIOUS	MODERATE	SERIOUS	LOW	MODERATE
Lopez-Class, 2010 ³⁰	SERIOUS	LOW	SERIOUS	LOW	SERIOUS	LOW	SERIOUS
Rimkus, 2015 ³¹	SERIOUS	LOW	SERIOUS	LOW	MODERATE	LOW	SERIOUS
Smith, 2013 ³²	SERIOUS	LOW	CRITICAL	MODERATE	SERIOUS	LOW	MODERATE
Stewart, 2011 ³³	MODERATE	LOW	LOW	LOW	NO INFORMATION	MODERATE	MODERATE
Talukdar, 2008 ³⁴	SERIOUS	LOW	SERIOUS	MODERATE	LOW	LOW	MODERATE
Winkler, 2019 ³⁵	SERIOUS	LOW	SERIOUS	MODERATE	SERIOUS	LOW	SERIOUS
Zenk, 2014 ³⁶	MODERATE	MODERATE	SERIOUS	LOW	MODERATE	LOW	MODERATE

^a Possible ratings of low, moderate, serious, critical, or no information determined using the "Risk of Bias for Nutrition Observational Studies" tool (RoB-NObs) (Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.)

References of the articles included in the income and price of food rapid review

- Akbay, C, Jones, E. Food consumption behavior of socioeconomic groups for private labels and national brands. Food Quality and Preference. 2005;16(7):621-631.doi. <Go to ISI>://WOS:000231006600006.
- 2. Andreyeva, T, Blumenthal, et al. Availability and prices of foods across stores and neighborhoods: the case of New Haven, Connecticut. Health Aff (Millwood). 2008;27(5):1381-1388.doi: 10.1377/hlthaff.27.5.1381.
- 3. Ard, J D, Perumean C, et al. Fruit and vegetable pricing by demographic factors in the Birmingham, Alabama, metropolitan area, 2004-2005. Prev Chronic Dis. 2010;7(4):A78.doi.
- 4. Beydoun, M A, Powell, et al. Food prices are associated with dietary quality, fast food consumption, and body mass index among U.S. children and adolescents. J Nutr. 2011;141(2):304-311.doi: 10.3945/jn.110.132613. Epub 2010 Dec 22.
- 5. Beydoun, M A, Powell, L M, Wang, Y. The association of fast food, fruit and vegetable prices with dietary intakes among US adults: is there modification by family income? Soc Sci Med. 2008;66(11):2218-2229.doi: 10.1016/j.socscimed.2008.01.018. Epub 2008 Mar 3.
- 6. Block, D, Kouba, J. A comparison of the availability and affordability of a market basket in two communities in the Chicago area. Public Health Nutr. 2006;9(7):837-845.doi: 10.1017/phn2005924.
- 7. Borja, K, Dieringer, S. Availability of affordable healthy food in Hillsborough County, Florida. Journal of Public Affairs. 2019;19(3).doi. <Go to ISI>://WOS:000481524400018.
- 8. Broda, C, Leibtag, E, Weinstein, D E. The role of prices in measuring the poor's living standard. Journal of Economic Perspectives. 2009;23(2):77-97.doi.
- 9. Cassady, D, Jetter, K M, Culp, J. Is price a barrier to eating more fruits and vegetables for low-income families? J Am Diet Assoc. 2007;107(11):1909-1915.doi: 10.1016/j.jada.2007.08.015. Epub 2007 Oct 18.
- 10. Chang, C H, Hooker, et al. Organic and Conventional Milk Purchase Behaviors in Central Ohio. Agribusiness. 2011;27(3):311-326.doi. <Go to ISI>://WOS:000293083500004.
- 11. Chung, Chanjin, Myers, Jr Samuel L. Do the Poor Pay More for Food? An Analysis of Grocery Store Availability and Food Price Disparities. Journal of Consumer Affairs. 1999;33(2):276.doi. http://ezproxyhhs.nihlibrary.nih.gov/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=2440351&site=ehost-live&scope=site.
- 12. Cole, Shaun, Filomena, Susan, Morland, Kimberly. Analysis of Fruit and Vegetable Cost and Quality Among Racially Segregated Neighborhoods in Brooklyn, New York. Journal of Hunger & Environmental Nutrition. 2010;5(2):202-215.doi.
- 13. Daepp, M. Prices and availability of healthy foods across St. Louis. American Economist. 2015;60(2):209-224.doi.
- 14. Davis, David E, Leibtag, Ephraim S. INTERSTATE VARIATION IN WIC FOOD PACKAGE COSTS: THE ROLE OF FOOD PRICES, CASELOAD COMPOSITION, AND COST-CONTAINMENT PRACTICES. 2005;37.doi.
- 15. DeWeese, R S, Ohri V, P. Cost of Children's Healthy vs. Unhealthy Snacks Does Not Differ at Convenience Stores. J Nutr Educ Behav. 2017;49(3):241-243.e241.doi: 10.1016/j.jneb.2016.11.006. Epub 2017 Jan 7.
- Dunn, R A, Sharkey, et al. Socio-economic status, racial composition and the affordability of fresh fruits and vegetables in neighborhoods of a large rural region in Texas. Nutr J. 2011;10:6.doi: 10.1186/1475-2891-10-6.
- 17. French, S A, Wall, M, Mitchell, N R. Household income differences in food sources and food items purchased. Int J Behav Nutr Phys Act. 2010;7:77.doi: 10.1186/1479-5868-7-77.
- 18. Gillespie, Jeffrey, Hatzenbuehler, et al. The Impact of Neighborhood Income on the Cost of Energy-Dense and Nutrient-Dense Foods in Supermarkets. 2015;46(3):23.doi.
- 19. Gosliner, W, Brown, et al. Availability, quality and price of produce in low-income neighbourhood food stores in California raise equity issues. Public Health Nutr. 2018;21(9):1639-1648.doi: 10.1017/S1368980018000058. Epub 2018 Mar 15.
- 20. Hardin-Fanning, F, Rayens, M K. Food cost disparities in rural communities. Health Promot Pract. 2015;16(3):383-391.doi: 10.1177/1524839914554454. Epub 2014 Oct 10.
- 21. Hardin-Fanning, F, Wiggins, A T. Food Costs Are Higher in Counties With Poor Health Rankings. J Cardiovasc Nurs. 2017;32(2):93-98.doi: 10.1097/JCN.00000000000329.
- 22. Hatzenbuehler, P, Gillespie, J, O'Neil, C. Does healthy food cost more in poor neighborhoods? An analysis of retail food cost and spatial competition. Agricultural and Resource Economics Review. 2012;41(1):43-56.doi.
- 23. Hayes, Lashawn R. Are Prices Higher for the Poor in New York City? Journal of Consumer Policy. 2000;23(2):127-152.doi. http://ezproxyhhs.nihlibrary.nih.gov/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=3576727&site=ehost-live&scope=site.
- 24. Jetter, Karen M, Crespi, John M, Cassady, Diana. The Effects of the Spatial Distribution of Grocery Stores on Food Prices on Low Income Neighborhoods. 2006:18.doi.
- 25. Jewell, M P, Lai, et al. Higher pricing of fresh produce is more likely in SNAP-Ed eligible neighborhoods when adjacent non-program eligible neighborhoods are mixed income. Prev Med Rep. 2019;14:100817.doi: 10.1016/j.pmedr.2019.01.021. eCollection 2019 Jun.
- Kern, D M, Auchincloss, et al. Neighbourhood variation in the price of soda relative to milk and its association with neighbourhood socio-economic status and race. Public Health Nutr. 2016;19(18):3386-3396.doi: 10.1017/S1368980016001579. Epub 2016 Jun 30.

- Kern, D M, Auchincloss, et al. Healthy and Unhealthy Food Prices across Neighborhoods and Their Association with Neighborhood Socioeconomic Status and Proportion Black/Hispanic. J Urban Health. 2017;94(4):494-505.doi: 10.1007/s11524-017-0168-8.
- 28. Leider, J, Powell, L M. Sugar-sweetened beverage prices: Variations by beverage, food store, and neighborhood characteristics, 2017. Prev Med Rep. 2019;15:100883.doi: 10.1016/j.pmedr.2019.100883. eCollection 2019 Sep.
- 29. Leone, A F, Rigby, et al. Leone et al. Store type and demographic influence on the availability and price of healthful foods, Leon County, Florida, 2008. . 8 (6), A140. Prev Chronic Dis. 2011;8(6):A140.doi.
- Lopez-Class, M, Hosler, A S. Assessment of community food resources: A Latino neighborhood study in upstate New York. J Poverty. 2010;14(4):369-381.doi: 10.1080/10875549.2010.517070.
- 31. Rimkus, L, Isgor, et al. Disparities in the Availability and Price of Low-Fat and Higher-Fat Milk in US Food Stores by Community Characteristics. J Acad Nutr Diet. 2015;115(12):1975-1985.doi: 10.1016/j.jand.2015.04.002. Epub 2015 Jun 2.
- 32. Smith, M L, Sunil, et al. Disparities of food availability and affordability within convenience stores in Bexar County, Texas. J Environ Public Health. 2013;2013:782756.doi: 10.1155/2013/782756. Epub 2013 Jul 1.
- 33. Stewart, H, Dong, D S. Variation in retail costs for fresh vegetables and salty snacks across communities in the United States. Food Policy. 2011;36(2):128-135.doi. <Go to ISI>://WOS:000289340500004.
- 34. Talukdar, Debabrata. Cost of Being Poor: Retail Price and Consumer Price Search Differences across Inner-City and Suburban Neighborhoods. Journal of Consumer Research. 2008;35(3):457-471.doi.
- Winkler, M R, Lenk, et al. Variation in the food environment of small and non-traditional stores across racial segregation and corporate status. Public Health Nutr. 2019;22(9):1624-1634.doi: 10.1017/S1368980019000132. Epub 2019 Mar 8.
- Zenk, S N, Powell, et al. Impact of the revised Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) food package policy on fruit and vegetable prices. J Acad Nutr Diet. 2014;114(2):288-296.doi: 10.1016/j.jand.2013.08.003. Epub 2013 Oct 30.
- 37. Colabianchi, N, Antonakos, et al. The role of the built environment, food prices and neighborhood poverty in fruit and vegetable consumption: An instrumental variable analysis of the moving to opportunity experiment. Health Place. 2021;67:102491.doi: 10.1016/j.healthplace.2020.102491. Epub 2020 Dec 18.

Chapter 2 - What is the relationship between income or Federal Assistance participation/eligibility and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?

Laural Kelly English, PhD,^a Sara Scinto-Madonich, MS,^a Molly Higgins, MLIS,^b Marlana Bates, MPH, RD,^a Julie Nevins, PhD,^a Julia H Kim, PhD, MPH, RD,^a Emily Callahan, MS^c

Specific methods to conduct this rapid review

Develop a protocol

The research question, "What is the relationship between income and HEI?", was answered using a rapid review that was informed by an evidence scan.

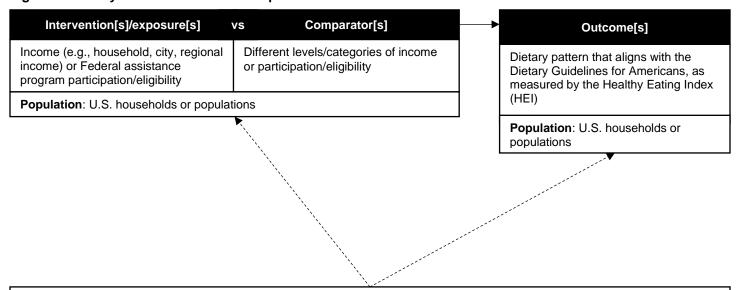
The analytic framework for the rapid review examining the relationship between income and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI), is presented in Figure 2-a. This analytic framework visually represents the overall scope of the rapid review question and depicts the contributing elements that were examined and evaluated. The intervention or exposure of interest is income or Federal assistance participation/eligibility in Americans. The comparators are different levels or categories of income or participation/eligibility status. The outcomes are HEI scores in Americans. The key confounders are urban versus rural settings, cultural/racial diversity or disparities, sex, age, food security status. The other factors to be considered are cultural food choices, neighborhood characteristics (e.g., access to food/distance to stores/access to car/type of store), smoking, weight status, chronic disease status, convenience level, and processing level. The confounders and other factors to be considered may impact the relationships of interest.

An evidence scan was conducted before the rapid review, and it included additional intervention/exposures of income proxies including socioeconomic status (SES) factors such as education, marital status, or household assets, food security status, and geographical areas. Based on the evidence scan, the intervention/exposure for the rapid review was narrowed to include only income or Federal assistance participation/eligibility in Americans to produce the strongest body of evidence that would be of most utility for the Thrifty Food Plan, 2021. The evidence scan also included outcomes of either consumption or purchasing of dietary patterns, diet diversity, and other diet quality indicators/scores as the outcomes, regardless of approach or measure used to study the dietary pattern. The outcome for the rapid review was narrowed to include only HEI scores based on consumption as these were by far the most common outcome studied across the evidence scan and the NEAT staff recognized that additional information would not be useful for the Thrifty Food Plan, 2012 by the inclusion of other types of dietary patterns that were not in direct alignment with the Dietary Guidelines for Americans. Comparisons of Federal assistance benefits between states were considered in the scan, but excluded from the rapid review for lack of applicability to the entire U.S. population. Similarly, comparisons of temporality within receipt month of Federal assistance benefits (e.g., 15 days past receipt v. 30 days past receipt) were

^a Analyst, NESR team; Panum Group, under contract with the FNS, USDA

^b Librarian, NESR team; Panum Group, under contract with the FNS, USDA

^c Project Lead, NESR team, NGAD, CNPP, FNS, USDA



considered in the scan, but excluded from the rapid review for lack of directness to the intended exposure of income.

Figure 2-a. Analytic Framework for the rapid review on income and HEI

Key confounders: Urban vs. Rural; Cultural/racial diversity or disparities; Sex; Age; Food security status Other factors to be considered: Cultural food choices; Neighborhood characteristics (e.g., access to food/distance to stores/access to car/type of store); Smoking; Weight status; Chronic disease status; Convenience level; Processing level

Key definitions

Low income: before-tax income at or below 130 percent of the U.S. poverty guidelines Higher income: before-tax income above 130 percent of the U.S. poverty guidelines Dietary pattern: The quantities, proportions, variety, or combination of different foods, drinks, and nutrients (when available) in diets, and the frequency with which they are habitually consumed.

Legend Relationship(s) of interest Factors that may impact the relationship(s) of

interest

Search for and select studies

The following outlines any departures from the search and select studies project methods for this specific rapid review:

• 80% of all records were single-screened at title, abstract, and full-text levels and 20% of all records were dual-screened, independently at each of these levels.

NESR analysts worked jointly with NEAT staff to establish the final inclusion and exclusion criteria and literature search strategy, which are detailed in **Table 2-a** and **Appendix 2-a**, respectively.

Table 2-a. Inclusion and exclusion criteria for the rapid review on income and HEI

Category	Inclusion Criteria	Exclusion Criteria			
Study design	Any study design that is not a narrative review, systematic review, or meta-analysis	Narrative reviewsSystematic reviewsMeta-analyses			
Intervention/ exposure	 Income (e.g., household, city, regional income) Income-based Federal assistance program participation/eligibility 	Other proxies used for income			
Comparator	 Different levels or categories of income Different participation/eligibility status in income-based Federal assistance program(s) 	Comparison of geographic areas without a proxy for income			
Outcomes	 Dietary patterns that specifically align with the Dietary Guidelines for Americans, as measured by the total Healthy Eating Index (HEI) All versions or variations of HEI (e.g. HEI-2005, HEI-2010, HEI-2015) Change in total HEI over time 	 Studies that examine any other dietary pattern or diet quality indicator that include only individual or select foods and beverages and do not reflect the totality of the diet nor the Dietary Guidelines for Americans. Studies that only examine component scores of the HEI 			
Publication date	 Jan 2008 - May 2021 and data inclusive of 2008 (e.g., 2000-2012; 2008-2009) 	Articles published prior to Jan 2008Data prior to 2008 (e.g., 2000-2007; 1999-2005)			
Publication status	 Articles that have been peer-reviewed Grey literature: reports that have not been peer reviewed but are available from government and nongovernmental organizations 	 Articles that have not been peer reviewed and are not published in peer-reviewed journals (e.g., unpublished data, manuscripts, pre-prints, reports, abstracts, and conference proceedings), other than reports from government and nongovernmental organizations 			
Language	Articles published in English	Articles published in languages other than English			
Country	Studies conducted in the U.S.	Studies conducted outside the U.S.			
Study participants	Human participants/populations	Non-human participants (e.g., animal studies, invitro models)			

Category	Inc	clusion Criteria	Exclusion Criteria
Age of study participants	•	Age at intervention or exposure:	
participanto		 Infants and toddlers (birth to 24 months) 	
		 Children and adolescents (2-18 years) 	
		o Adults (19-64 years)	
		o Older adults (65 years and older)	
	•	Age at outcome:	
		o Infants and toddlers (birth to 24 months)	
		o Children and adolescents (2-18 years)	
		o Adults (19-64 years)	
		o Older adults (65 years and older)	

Extract data and assess the risk of bias

NESR analysts extracted and summarized data from each included article to objectively describe the body of evidence available to answer a rapid review question. The following outlines any departures from the extract data and assesses risk of bias project methods for this specific rapid review:

 Data extraction and risk of bias assessment was completed on all included articles and verified by a 2nd analyst

Synthesize the evidence

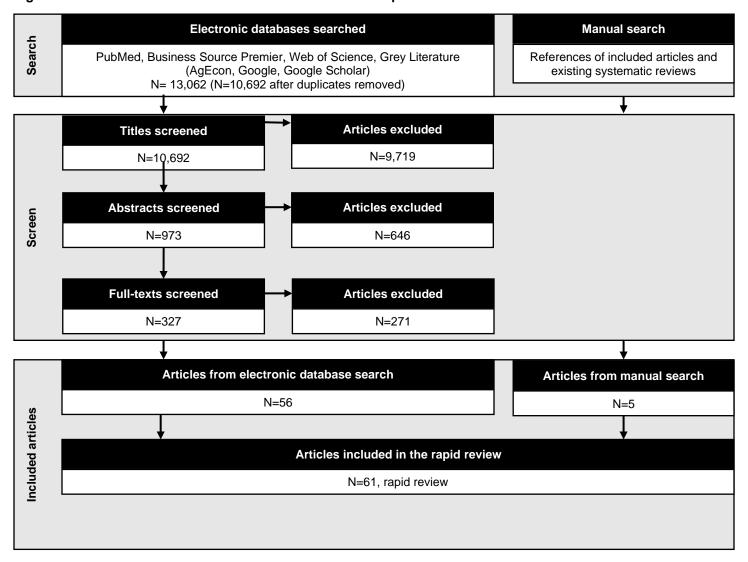
Evidence synthesis was completed by describing the evidence and evaluating the included studies individually and collectively as previously described in the project methods.

Summary statements

NESR analysts formed summary statements, as previously described in the project methods, outlining the themes observed during the data synthesis of studies examining income and HEI.

Recommend future research

Recommendations for future research evaluating the relationship between income and HEI were determined based on the gaps and limitations observed during data extraction and synthesis, as previously described in the project methods. Future work addressing these gaps and limitations may contribute to the body of evidence available to answer this research question.


Results

Literature search and screening results

The literature search yielded 10,692 search results after the removal of duplicates (see **Figure 2-b**). Dual-screening resulted in the exclusion of 9,719 titles, 646 abstracts, and 183 full-texts articles. Reasons for full-text exclusion are in **Appendix 2-b**. Five additional articles were identified from the manual search. The body of evidence for the rapid review included 61 articles.

Figure 2-b. Literature search and screen flowchart for the rapid review on income and HEI

Description of evidence

This rapid review included 61 articles that examined the relationship between income and HEI. Four articles came from prospective cohort studies¹⁻⁴ and the rest (57 articles) were from cross-sectional study designs.⁵⁻⁶¹ Common data sources of these studies included the National Health and Nutrition Examination Survey (NHANES)^{5,13,14,23,24,26,29,33,37-44,47-49,52-54,56,61} and the Continuing Survey of Food Intake by Individuals (CSFII).^{7,45} Four articles were included from the Healthy Aging in Neighborhoods of Diversity across the Life Span Study (HANDLS) but represented unique data by examining different sub-samples or analytic/assessment methods. 1,6,9,34

Population characteristics

Most of the studies (~41%) were conducted using data from national databases or by enrolling participants from multiple states, with a few select studies conducted exclusively in rural or urban cities or areas. Across the body of evidence, analytic sample sizes ranged from n=80 to n=43,996. More information on the location and analytic sample size from each individual article can be found in **Table 2-b**.

Studies varied across all populations and life stages. Most of the studies examined data in adults ^{1,2,5-7,9-12,15-18,20,25,28,30,31,34,37,41-46,48-51,54,56-58,60,61} with a smaller sub-set of articles examining data in children (toddlers through adolescents). ^{4,8,14,19,21,24,26,27,29,32,33,35,38-40,52,53} In addition, there were 7 articles that studied children and adults ^{13,47}, or child-adult dyads. ^{3,22,36,55,59} One study examined household data. ²³

Most studies enrolled participants regardless of sex, although select studies enrolled only women ⁵⁰, or those who were pregnant. ^{16,28,51} Most studies enrolled participants regardless of racial/ethnic background, but select studies enrolled only those who were Hispanic, ^{51,61} of Mexican-origin, ⁴⁰ African-American, ^{46,50} Haitian-American, ³⁰ or members of the Confederated Salish, Pend d'Oreille, or Kootenai tribes of Flathead nation. ¹⁰ Select studies exclusively enrolled participants with diagnosed diabetes ^{12,44} or cancer. ³¹

Exposure and comparator characteristics

Studies examined household income^{8,10,11,15-18,20,22,30,36,46,50,58,60} or poverty (e.g., poverty-to-income ratio (PIR)).^{1,3-5,7,9,12,34,40,43-45,48,52,53,61}. Studies varied in the cut-off points used for income, poverty, or thresholds applied, whether or not household/family size was accounted for in the income variable, and/or percentage of residents in living poverty at that address according to Census data.

Both income or poverty and Federal assistance program participation/eligibility were examined in a subset of studies. 24-26,28,31-33,39,55,59

Studies examined participation and eligibility in various Federal assistance programs, ^{2,6,13,14,19,21,23,25-33,35,37-39,41,42,47,49,51,52,54-57,59} including Supplemental Nutrition Assistance Program (SNAP, formerly Food Stamps) eligibility and participation, ^{2,6,13,23-25,28,29,31,35,37-39,41,42,47,49,54,56,57} National School Lunch Program (NSLP) or School Breakfast Program (SBP) participation, ^{14,19,21,24,26,27,33,39} Supplemental Assistance Program for Women, Infants and Children (WIC) participation and duration, ^{25,32,39,51,59} and other programs (e.g., Child and Adult Care Food Program (CACFP), ⁵⁵ and Medicaid or Supplemental Security Income (SSI)^{25,31}).

Outcome assessment

All studies examined dietary patterns aligned with the DGA as measured by the HEI²², HEI-2005 (14 articles) ^{7,12-15,18,23,26,30,36-38,56,58}, HEI-2010 (31 articles) ^{1,2,4-6,9-11,17,19-21,24,25,27-29,31-34,40-44,46,50,54,60,61}, and/or HEI-2015 (15 articles) ^{3,8,16,35,39,45,47-49,51-53,55,57,59}. Scores on the HEI were determined using a variety of dietary assessment methods, including food frequency questionnaires or 24-hour dietary recalls.

Synthesis

Results from all included studies are provided in **Table 2-b**. Income was significantly associated with HEI scores in 20 articles. 1,3-7,9,13,20,22,30,36,40-44,48,49,54 Results were reported as lower income/greater poverty associating with lower HEI scores, higher income/less poverty associating with higher HEI scores, and/or as participation versus non-participation in Federal assistance program(s) associating with lower HEI scores.

Eleven articles reported 'positive' associations (that is, higher income associated with higher HEI scores) with not all results reported reaching statistical significance. ^{2,17,23,25,26,33,37,39,45,50,58} Five articles ^{14,21,19,24,59} reported at

least 1 significant 'inverse' association with 3 finding that NSLP participants (compared to non-participants) had significantly higher HEI scores. 14,19,21 Gu et al 24 reported that NSLP was significantly associated with lower HEI scores and WIC participation was significantly associated with higher HEI scores, but comparisons based on income or SNAP status were not significant. Weinfield et al⁵⁹ similarly reported that longer WIC duration was significantly associated with higher HEI scores, but comparisons of HEI by poverty were not significant.

The remaining articles reported no significant association between income, 8,10,11,15,16,18,31,32,46,55,60 poverty-toincome ratio, 12,34,52,53,61 Federal assistance participation/eligibility/duration (SNAP, 29,35,38,47,51,56,57 NSLP, 27 WIC, ⁵¹), or both income and Federal assistance²⁸ and HEI scores.

Assessment of evidence

As outlined and described below, the body of evidence examining the relationship between income and HEI was assessed for the following elements.

Risk of bias

Risk of bias assessments for each included article are provided in **Table 2-c**. The preponderance of evidence came from observational studies, particularly cross-sectional data or design, that did not account or adjust for key confounders including food insecurity/hunger and urban/rural setting. Many studies had serious or some concerns with classification of income due to self-selection of Federal assistance program participation/eligibility status and/or proxy calculations. Many studies had serious concerns related to comparisons with little difference between income levels of exposure groups or likelihood that participants' income or Federal participation/eligibility status was assessed at a single point in time but likely instable. Many studies also had concerns with missing data and/or the selection of reported results due to the lack of a priori analysis plans/protocol.

Consistency

The direction of findings consistently showed that lower income was associated with lower HEI scores and the magnitude of the effect was consistently small, with many reported results not reaching statistical significance. Participation in Federal assistance programs was correlated with lower diet quality, as measured by HEI scores. However, about half of the articles found no statistically significant relationships between income and HEI.

Directness

The body of evidence had several concerns regarding directness, particularly the exposures and/or comparators examined by studies were not directly related to the question of interest. For example, studies examining SNAP participation tended to compare groups that had similar or nearly similar income levels. In addition, the population in several articles were all low-income or all participants in specific Federal assistance programs. Outcomes examined in all studies were directly related to the question.

Precision

Several concerns with precision were identified across the body of evidence. Although sample sizes were relatively large, the reported effects tended to be small in magnitude (of little practical/clinical significance) and have wider confidence intervals indicating limited precision.

Generalizability

Although all studies were conducted in the U.S. and many used nationally representative data, the generalizability was limited in several studies particularly related to the selection of participants. For example, several studies examined differences within exclusive populations such as all WIC participants, all low-income participants, only Mexican-origin children, or only Haitian-Americans.

Summary statements and research recommendations

Summary statements

The findings of the rapid review are presented in the following summary statement[s].

Evidence suggests lower income or greater poverty is correlated with lower HEI scores. Critical limitations in the design and conduct of most included studies were identified that impact the validity of the reported results. In addition, the findings that reached statistical significance tended to lack meaningful clinical/practical significance (e.g., 1 to 5 point higher HEI scores) but remaining within a range of needing improvement.

Studies widely varied in how they defined and examined income exposures. No clear trends were found between studies that examined similar or different income groupings.

Studies that examined Federal assistance eligibility/participation often reported indirect income exposures or comparisons, and/or treated income constant between participant groups.

Relatively few studies accounted for food security/hunger. No clear trends were found among exposures, outcomes, or significance of results based on whether food security was accounted for or not.

Research recommendations

- 1. Conduct well-designed, longitudinal studies that examine the relationship between income and diet quality over time.
- 2. Assess income exposures using standard definitions and categories to improve comparability across studies.
- 3. Differentiate between participants in studies who are income-eligible, income-eligible nonparticipants, and income-ineligible nonparticipants of Federal assistance programs.
- 4. Account for hunger or food security status of participants, as well as other potential confounders including urban/rural setting and cultural/racial diversity or disparities, to better determine the response to income on dietary patterns as a function of these factors.

Table 2-b. Evidence examining the relationship between income and/or Federal assistance participation/eligibility and HEI^a

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
	-			Incor	me	
Bekelman, 2021 ⁸	482	Children, 5 y; Colorado <u>Data source:</u> Healthy Start study	Income: <\$75K v. ≥ \$75K	HEI- 2015	OR: 0.84, 95% CI: 0.54, 1.31, NS	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with departure from intended exposure due to lack of accounting for food insecurity/hunger
Byker Shanks, 2020 ¹⁰	80	Adults, ≥18 y; Flathead nation, Montana Data source: N/A	Income, \$	HEI- 2010	data NR, p< 0.21; NS	Minimal concerns with selection into study and selection of reported results
Chen, 2018 ¹¹	298	Adults: Parents of children, 9 to 10 y; rural Texas Data source: Student Wellness Assessment and Advocacy Project [SWAAP]	Income: Low <\$40K; Medium \$40,001–\$70K; High >\$70,001	HEI- 2010 adapted	β= 0.09, r=-0.29189, p=0.268; NS	Did not account for confounders of: Food security; Some concerns with outcome measurement due to adaption of HEI-2010
Deierlein, 2014 ¹⁵	1306	Adults, 60 to 99 y; New York City, New York Data source: Cardiovascular Health of Seniors and the Built Environment Study	Annual HH income: > \$30K (ref) v. ≤ \$30K	HEI- 2005	HEI ≥ 80 v. <80 RR: 1.20 95% CI: 0.93, 1.55	Some concerns with selection bias; Some concerns with departure from intended exposure

^{*} All study designs and/or data reported were cross-sectional unless indicated by *PCS, which indicates a prospective cohort study design.

[†] Unless otherwise noted, results are formatted as mean (SD), mean [SE], odds ratio (OR), relative risk (RR), and/or 95% Confidence Interval (CI). Results that were statistically significant are bolded and those that were not statistically significant are indicated either by the respective p value or NS.

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
Deierlein, 2021 ¹⁶	1016	Adults, all pregnant women, ≥ 18 y; New York City, New York <u>Data source:</u> New York University Children's Health and Environment Study (NYU CHES)	Income: <\$30K; \$80K-\$99.999K; ≥\$100K	HEI- 2015	≥\$100k (ref) v. <\$30k: 1.92, 95% CI: -0.41, 4.25, NS ≥\$100k (ref) v. \$30-\$99.999k: 1.02, 95% CI: -0.53, 2.57, NS	Did not account for confounders of: Food security; Some concerns with selection bias; Some concerns with departure from intended exposure related to potential for changes from timing of assessments; Limited generalizability to non-pregnant populations
Drewnowski, 2016 ¹⁷	1116	Adults, ≥ 18 y; Seattle, Washington <u>Data source:</u> Seattle Obesity Study (SOS)	Income, ≤\$50K ref v. \$50K to < 100K; ≤\$50K ref v. ≥\$100K	HEI- 2010; HEI- 2005	HEI-2010: \$50K to <100K: 1.34, 95% CI: −0.13, 2.82 ≥\$100K: 2.57, 95% CI: 0.96, 4.19 HEI-2005: \$50K to <100K: 0.72, 95% CI: −0.73, 2.19; NS ≥\$100K: 1.30, 95% CI: −0.28, 2.89; NS	Did not account for confounders of: Food security; Some concerns with departure from intended exposure
Flórez, 2015 ¹⁸	639	Adults, ≥ 18 y, all SNAP participants; Pennsylvania Data source: Pittsburgh Hill/Homewood Research on Eating, Shopping and Health (PHRESH) study	Adjusted annual HH income ≥ \$10K	HEI- 2005	β= -0.0235, p=0.6787; NS	Some concerns with departure from intended exposure, missing data, outcome measurement and reported results; Limited generalizability to non-SNAP participants
Freedman, 2019 ²⁰	101	Adults, 19 to 92 y, living in urban food desert; Ohio Data source: BRFSS	Annual HH Income	HEI- 2010	Path modeling including the collective influence of individual, social, and built food environment factors on diet quality with income included in the models: Cleveland: Income, β = 0.171, p<0.05 Columbus: Income, β =0.300, p<0.10	Some concerns with classification of exposure and departure from intended exposure; Concerns with indirectness
Gibbs, 2016 ²²	177	Dyads of Children 4 to 6 y, with parents (primary food purchaser/preparer); Kansas	HH income, \$, mean	HEI	Income: r=0.218, p <0.05	Did not account for confounders of: Urban vs. Rural; Food security

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
		Data source: Kansas University Docosahexaenoic Acid Outcomes Study (RCT); Nutrition Literacy Assessment Instrument for Parents (NLit-P)				
Laster, 2013 ³⁶	113	Dyads of Overweight/obese (BMI≥25), 2-7 mo post-partum mothers, ≥18 y and their preschooler, 2 to 5 y; North Carolina Data source: Kids and	HH income, up to \$15K \$15001- \$30K, \$30001- \$60K, ≥\$60001	HEI- 2005	Mother HH income: <\$15K 59.5 (9), \$15001-\$30000, 65.9 (11), \$30001-\$60K, 66.4 (10.5), \geq \$60K, 70.3 (8.7), p<0.0001 Stepwise model predicting child HEI: \$15K v. >\$15K, β=-2.33 [1.10], p=0.04; \$15001 to \$60K v. \geq \$60K,1 β=-1.73 [0.72], p=0.02	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with classification of exposures due to proxy with caretakers
		Adults Now!—Defeat Obesity (KAN-DO)				
Huffman, 2014 ³⁰	487	Adults ≥35 y, Haitian- Americans without diabetes; Florida <u>Data source:</u> NR	<\$20K/y v. ≥ \$20K/y	HEI- 2005	β=-5.30, 95% CI: 0.03, -10.6, p=0.051	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with selection into study, departure from intended exposures, and reported results. Limited generalizability related to studying only Haitian-American immigrants.
Richards Adams, 2019 ⁴⁶	100	Adults, 18 to 74 y, African American living in a metropolitan area <u>:</u> Kentucky	Income	HEI- 2010	Bivariate correlation r=0.13, NS Linear regression β=0.10, p=0.82, NS	Did not account for confounders of: Food security; Some concerns with selection into study; Limited due to convenience sample
		Data source: N/A				
Springfield, 2019 ⁵⁰	210	Adults, all women, African-American, previous breast cancer, and interested in weight-loss (all	Income, \$	HEI- 2010	β=1.44 [0.52], p≤ 0.01, but did not move forward in adjusted models	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with selection into study; Limited generalizability due to participants

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
		overweight or obese); Chicago, IL				self-selecting into study for weight loss
		<u>Data source:</u> Moving forward study, a RCT for weight loss				
Weatherspoo n, 2017 ⁵⁸	2687	Adults, ≥ 19 y: Michigan <u>Data source:</u> Michigan State University Extension (MSUE)	HH income \$100 and \$500/pp/mo v. <\$100/pp/mo	HEI- 2005	Δ HEI exit-entry after SNAP-Ed only: – 0.68 [0.02], p<0.01 Δ HEI exit-entry after EFNEP only: –0.85 [0.03], p<0.01 Data NR: HH income \$100 and \$500/pp/mo v. <\$100/pp/mo increased in ΔHEI scores, p<0.05; \$500 or more, NS	Did not account for confounders of: Food security; Serious concerns with departure from intended exposures; Comparator not directly related to question of interest
Wilcox, 2020 ⁶⁰	465	Adults, ≥18 y, shoppers for ≥50% household's food; South Carolina cities	Income: <\$10k; \$10-\$19.999k; ≥\$20k	HEI- 2010	<\$10k: 47.42 v. \$10-\$19.999k: 47.26 v. ≥\$20k: 49.75, NS Income, F (4, 448)=6.71, p<0.001, r2=0.06; F(2, 448)=1.29, p=0.28	Did not account for confounders of: Cultural/racial diversity or disparities; Food security; Serious concerns with departure from intended exposures
		Data source: N/A				
				Pove	rty	
Aggarwal, 2016 ⁵	8957	Adults, ≥20 y; National dataset <u>Data source:</u> NHANES, 2007-2010	FIPR: family income-to-poverty ratio, adjusted for HH size	HEI- 2010	FIPR <130%: 45.6, 131-184%: 47.1, 185-399%: 48.4, ≥400%: 51.7 <130% (ref) v. 131-184%: 1.96 [0.86], p=0.030 <130% (ref) v. 185-399%: 3.21 [0.50], p<0.001 <130% (ref) v. ≥400%: 6.48 [0.60], p<0.001	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns due to missing data
Beatty, 2014 ⁷	37263	Adults, ≥ 20 y; National dataset <u>Data source:</u> CSFII, 1989-1991, 1994- 1996; NHANES, 2001- 2008	HH Income <185% FPG (low)	HEI- 2005	2005-2008, n=9258: low-income 51.37 (14.99), 95% CI: 8.78, 94.60 v. higher-income 52.92 (11.29), 95% CI: 10.00, 95.38, p<0.05 Data NR (in figures): For HEI below 45, higher-income individuals experienced a greater improvement over the period 1989–2008 than low-income individuals. Whereas at higher levels of the HEI	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with departure from intended exposure due to lack of accounting for food insecurity/hunger; Some concerns with outcome measurement due to timing of dietary data collected vs calculated; Some concerns with reported results; Limitations

Article*	N	Population	Exposure	Outcome		Summary of Limitations
					distribution, low-income individuals experienced greater increases in HEI.	related to date range of data collected
Beydoun, 2015 ⁹	2111	Adults, 30 to 64 y; Baltimore, Maryland Data source: Healthy Aging in Neighborhoods of Diversity across the Life Span Study (HANDLS)	PIR: ≥ 125% poverty threshold v <125% poverty threshold	HEI- 2010	PIR≥125%: 43.82 (0.35) v. <125%: 40.93 (0.34), p<0.05	Did not account for confounders of: Sex; Age; Food security; Some concerns with departure from intended exposure due to lack of accounting for food insecurity/hunger; Some concerns with outcome measurement
Beydoun, 2018 ¹ *PCS	1466	Adults, 30 to 64 y; urban Maryland <u>Data source:</u> HANDLS	PIR <125% poverty threshold, ≥125% poverty threshold	HEI- 2010	baseline, ≥125%, 44.5 [0.4] v. <125%, 41.3 [0.4], p<0.001 follow-up, ≥125%, 47.95 [0.4] v.<125%, 44.6 [0.46], p<0.001 change, ≥125%, +0.78 [0.10] v. <125%, +0.68 [0.10], NS	Did not account for confounders of: Food security; Some concerns with selection bias; Some concerns with departure from intended exposure due to lack of accounting for food insecurity/hunger; Some concerns with reported results due to no protocol
Coltman, 2013 ¹²	99	Adults, 18 to 75 y; diagnosed with type 2 diabetes; urban Illinois Data source: N/A	PIR ≤130%, >130%, based on # of people living in HH	HEI- 2005	PIR: ≤130%, 56.0 (11.3) v. >130%, 56.6 (9.6); NS Correlations with HEI: PIR: -0.075; NS	Critical concerns due to not accounting for confounders of: Cultural/racial diversity or disparities; Sex; Age; Food security; Serious concerns due to selection into study based on diabetic status; Some concerns with departure from intended exposure; Limited generalizability
Covington, 2020 ³ *PCS	207	Dyads of Children, 12 to 32 mo with their mothers; Mid-Atlantic region Data source: NCT02615158	Poverty based on parent-reported income and family size, <1.0 indicated below poverty threshold	HEI- 2010	Between-person indirect effect: 3.797 [0.842], 95% CI: 2.133, 5.460, p<0.05 Within-person indirect effect: -3.552 [2.230], 95% CI: -7.948, 0.844, NS	Did not account for confounders of: Cultural/racial diversity or disparities (68% Non-Hispanic Black); Food security; Some concerns due to missing data despite methods used to account for impact;
Kuczmarski, 2016 ³⁴	2111	Adults, ~48 y <u>;</u> Baltimore City, Maryland	PIR: ≥ 125% poverty threshold	HEI- 2010	PIR ≥ 125% vs. <125%: 0.70 (0.49), NS	Did not account for confounders of: Food security; Some concerns

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
			vs. <125% poverty			with departure from intended
		Data source: HANDLS	threshold			exposure
Martin, 2015 ⁴⁰	4799	Children, 5 to 17 y of Mexican-origin; National dataset	PIR-squared	HEI- 2010	-1.30, p<0.05	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with missing data. Limited
		Data source: NHANES, 1999-2010				generalizability due to sample being only Mexican-origin children.
Nowlin, 2016 ⁴³	11668	Adults, ≥20 y not pregnant; National dataset	PIR	HEI- 2010	Regression coefficient [SE] PIR: ≥3.5 (ref) v. 1.3-3.49; ≥3.5 (ref) v. ≤1.29 No T2D, n=9,509: -2.47 [0.6], p<0.01; -	Did not account for confounders of: Urban vs. Rural; Food security; Serious concerns with departure from intended
		<u>Data source:</u> NHANES, 2007-2012			3.15 [0.6], p<0.01 Undiagnosed T2D, n=451: 4.68 [2.1] NS; - 1.47 [2.0] NS; Diagnosed T2D, n=1708: 1.00 [1.4] NS; - 0.96 [1.4] NS	exposures and reported results.
Orr, 2019 ⁴⁴	5882	Adults, ≥ 20 y with type 1 or 2 diabetes; National dataset	PIR, based on % HH income at; 100%, 100–200%, > 200% poverty	HEI- 2010	PIR, <100% (ref): 100-200% 0.74 95% CI: -0.79, 2.27, NS; >200% 3.65 95% CI: 2.35, 4.95, p<0.001; Δ HEI/y: 0.18 95% CI: 0.04, 0.33, p=0.01;	Did not account for confounders of: Urban vs. Rural; Some concerns with selection into study
		Data source: NHANES, 1999-2014	threshold		Interaction, food security x NHANES cycle: NS	
Patetta, 2019 ⁴⁵	8012	Adults, 18 to 39 y; National dataset	<180% poverty threshold (low), 180-350% poverty	HEI- 2015	Low v. high income and mean HEI: 52.4 v.61.2, p<0.05 ; low v. middle: 52.4 v. 55.8, NS; middle v. high: 55.8 v. 61.2, NS	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or
		<u>Data source:</u> NHANES 2011-14	threshold (middle), >350% poverty threshold (high)			disparities; Sex; Age; Food security
Shan, 2019 ⁴⁸	43996	Adults, ≥20 y; National dataset	PIR: < 1, 1.3-3.49, ≥3.5	HEI- 2015	PIR < 1.3: 2009-10 55.6, 95% CI: 55.0, 56.1; 2011-12 56 95% CI: 55.0, 56.9;	N/A
		<u>Data source:</u> NHANES, 1999-2016			2013-14 55.7 95% CI: 55.0, 56.4; 2015-16 56.2 95% CI: 55.3, 57.2; 2015-16 v. 1999-00 difference, 0.81, 95% CI: -0.63, 2.26; NS	

Article*	N	Population	Exposure	Outcome		Summary of Limitations
					PIR 1.3-3.49: 2009-10 57.1, 95% CI: 56.4, 57.8; 2011-12 57.7, 95% CI: 57.0, 58.4; 2013-14 57.2, 95% CI: 56.6, 57.8; 2015-16 56.4, 95% CI: 55.6, 57.1; 2015-16 v. 1999-00 difference: 1.32, 95% CI: 0.18, 2.46 p<0.001	
					PIR ≥3.5: 2009-10 58.8, 95% CI: 58.1, 59.5; 2011-12 59.9, 95% CI: 58.9, 60.8; 2013-14 59.5, 95% CI: 58.8, 60.2; 2015-16 59.3, 95% CI: 58.3, 60.3; 2015-16 v. 1999-00 difference, 3.23, 95% CI: 1.71, 4.75, p< 0.001	
Taverno Ross, 2020 ⁴ *PCS	260	Children, 10 to 17 y; South Carolina Data source: Transitions and Activity Changes in Kids study	Poverty based on the percentage of residents living in poverty in the census tract for the child's home address.	HEI- 2015	HEI growth curve: 0.2 [0.1], p<0.05	Did not account for confounders of: Urban vs. Rural; Food security
Thomson, 2019 ⁵²	9000	Children, 2 to 18 y; National dataset <u>Data source:</u> NHANES 2009-2014	PIR: <1, ≥1	HEI- 2015	Overall: PIR<1 vs. PIR ≥1, 53.9, 95% CI: 52.5, 55.4 vs 55.1, 95% CI: 54.1, 56.1, NS By Race/Ethnicity (in figure): no significant differences in HEI by PIR in non-Hispanic black, Mexican American, other Hispanic or other race groups; Significant difference in non-Hispanic white group by PIR By Age Group and by gender: No significant differences in HEI by PIR	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Sex; Age; Food security; Serious concerns with departure from intended exposures
Thomson, 2020 ⁵³	8894	Children, 2 to 18 y; National dataset <u>Data source:</u> NHANES, 2009-2014	PIR: <1, ≥1	HEI- 2015	PIR< 1 v. PIR≥1, mean, 95% CI Underweight: 47.7, 95% CI: 42.8, 52.8 v. 51.1, 95% CI: 46.6, 55.8, NS Normal weight: 53.9, 95% CI: 52.2, 55.6 v. 55.6, 95% CI: 54.5, 56.6, NS Overweight: 55.2, 95% CI: 52.5, 57.9 v. 54.4, 95% CI: 52.0, 56.7, NS	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Sex; Age; Food security; Serious concerns due to missing data

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
					Obese: 53.3, 95% CI: 51.1, 55.5 v. 54.3, 95% CI: 51.2, 57.6, NS	
Wilson, 2018 ⁶¹	3555	Adults, ≥19 y, all Hispanic; National dataset	PIR ≤ 130% v. >130% poverty threshold	HEI- 2010	HEI <51.6: 1.18, 95% CI: 0.99,1.44; NS	Did not account for confounders of: Urban vs. Rural; Food security; Serious concerns due to missing data
		Data source: NHANES, 2007/08;				
		2009/10 Consumer Behavior Phone				
		Follow-Up Modules				
		Bot	h income and Federa	al assistanc	e program participation/eligibility	
Gu, 2017 ²⁴	All y:	Children, 2 to 18 y;	Income: PIR	HEI-	PIR ≤1.3 v. 1.31-3.5 v. >3.5:	Did not account for confounders
	38,48 7	National dataset	NSLP/SBP; SBP; SNAP;	2010	2007-2008 , n=5,402: 47.8, 95% CI: 46.2, 49.4 v. 44.9, 95% CI: 43.3, 46.4 v. 46.8,	of: Urban vs. Rural; Food security; Some concerns with
	Y in or after	Data source: NHANES, 1999-2012			95% CI: 44.7, 48.8, p<0.001 2009-2010, n=5,751: 48.0, 95% CI: 46.8,	departure from intended exposure
	2008:	MIANES, 1999-2012			49.2 v. 48.1, 95% CI: 46.2, 49.9 v. 48.2,	
	16,80 2				95% CI: 46.1, 50.2, NS 2011-2012, n=5,649 : 50.0, 95% CI: 48.6,	
	_				51.4 v. 49.7, 95% Cl: 48.3, 51.2 v. 51.5, 95% Cl: 49.3, 53.7, p=0.02	
					SNAP Yes v. No, Mean (95% CI)	
					2007-2008: 47.0 (45.2, 48.8) v. 49.0 (46.5, 51.5), p=0.007	
					2009-2010: 48.2 (46.7, 49.7) v. 48.0	
					(45.9, 50.1), NS 2011-2012: 49.6 (47.9, 51.2) v. 51.1	
					(49.0, 53.3), p=0.004	
					All years combined: NS	
					WIC Yes v. No, Mean (95% CI) 2007-2008: 51.2 (49.1, 53.3) v. 53.4	
					(51.3, 55.6), NS	
					2009-2010: 53.7 (51.2, 56.1) v. 51.2 (47.9, 54.5), NS	
					2011-2012: 55.8 (53.9, 57.8) v. 51.3 (48.9, 53.7), p=0.008	

Article*	N	Population	Exposure	Outcome		Summary of Limitations
					All years combined: Higher v. Lower (numbers not reported), p=0.006	
					NSLP/SBP Yes v. No, Mean (95% CI) 2007-2008: 45.2 (44.2, 46.2) v. 47.5 (43.8, 51.3), p<0.001 2009-2010: 46.8 (45.6, 48.1) v. 43.2 (40.2, 46.2), NS 2011-2012: 49.0 (47.8, 50.3) v. 46.8 (43.2, 50.4), NS All years combined: Lower v. Higher	
					(numbers not reported). p=0.003	
Gupta, 2020 ²⁵	450	Adults, ~ 51.1y, primary food shoppers with low access to healthy food retail; Ohio Data source: N/A	SNAP participation in past 12 mo; WIC participation in past 12 mo; Other federal assistance in past 12 mo (TANF, Medicaid, disability, or SSI) Income: <\$10K, \$10,001-\$20K, \$20,001-\$30K, \$30,001-\$40K, >\$40,001 (ref).	HEI- 2010	Income, >\$40,001 (ref): $<$ \$10K β =-2.3, NS; \$10,001-\$20K β =-2.9, NS; \$20,001-\$30K β =-0.7; \$30,001-\$40K β =-1.8, NS; SNAP , non-participation (ref): β =-2.5, p=0.04 ; WIC, non-participation (ref): β =-2.2, NS; Other: β =0.4, NS;	Some concerns with departure from intended exposure; Serious concerns with selection of reported results; Limited generalizability to those with higher access to healthy food retail.
Hanson, 2013 ²⁶	2376	Children, 6 to 17 y; National dataset <u>Data source:</u> NHANES, 2003-2008	Family Income: <200% poverty threshold (ref), >200% poverty threshold; NSLP: no meals (ref), school lunch only, school breakfast and lunch;	HEI- 2005	Income, >200% v. <200% poverty threshold: weekday, 51.2 95% CI: 49.0, 51.4 v. 50.2 95% CI: 49.0, 51.4, NS; weekend, 47.6 95% CI: 46.1, 49.2 v. 48.9 95% CI: 47.8, 50.0, NS; difference, +3.3 95% CI: 1.7, 5.0 v. +1.3 95% CI: 0.2, 2.5, NS NSLP participation, NSLP only v. no meals, NSLP+SBP v. no meals: weekday: 50.0 95% CI: 48.7, 51.2 v. 52.1 95% CI: 50.3, 53.9, p<0.05, 50.5 95% CI: 49.4, 51.8 v. 52.1 95% CI: 50.3, 53.9, NS,	Serious concerns due to not accounting for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Sex; Age; Food security; Serious concerns with classification of exposure, departure from intended exposure, missing data, and selection of reported results related to intent of study to capture weekday/weekend changes in HEI.

Article*	N	Population	Exposure	Outcome		Summary of Limitations
					weekend, 48.5 95% CI: 46.8, 50.2 v. 46.9 95% CI: 45.0, 48.9, NS, 48.5 95% CI: 47.4, 49.7 v. 46.9 95% CI: 45.0, 48.9, NS; difference, +1.4 95% CI: -0.3, 3.2 v. +5.2 95% CI: 2.8, 7.6, p<0.05, +1.9 95% CI: 0.7, 3.1 v. +5.2 95% CI: 2.8, 7.6, p<0.05;	
Hill, 2020 ²⁸	168	Adult, ≥18 y, pregnant women in 2nd trimester recruited from WIC clinic; North Carolina Data source: N/A	Monthly income: \$0-1,000, ≥ \$1,001; SNAP: Receives benefits or not	HEI- 2010	Monthly income: \$0-\$1000, 54.96 (14.16) 95%CI: 52.19, 57.72, v. ≥ \$1001, 57.36 (13.11) 95%CI: 54.68, 60.05; NS SNAP: receives benefits, 56.61 (13.36) 95%CI: 54.05,59.17 v. not receiving benefits, 55.51 (14.05) 95%CI: 52.63, 58.48; NS	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Age; Food security; Some concerns with selection into study, classification of exposure, departure from intended exposures, missing data, and reported results. Limited generalizability to those who are not pregnant and without WIC
Kane, 2018 ³¹	242	Adults, >18 y, diagnosed with cancer currently receiving treatment; Ohio Data source: N/A	Income/mo: ≥\$4K, \$3K-\$3999, \$2K- \$2999, \$1K-\$1999, <\$1K Federal Food Assistance: SNAP, other, none	HEI- 2010	Bivariate-Income/mo, ≥\$4K 64.69 (10.52) (ref): \$3K-\$3999 63.61 (12.66), \$2K-\$2999 60.63 (11.01), \$1K-\$1999 57.25 (11.55), <\$1K 56.44 (12.12), p≤0.001 Bivariate-Fed Food Assistance: None 62.55 (11.61) (ref): SNAP 55.18 (9.59), Other 55.73 (16.39), p≤0.01 Regression - Income/mo, ≥\$4K (ref): \$3K-\$3999/mo, β =0.79, 95% CI: -2.97, 4.55, p=0.68	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Food security; Serious or some concerns with selection into study, classification of exposures, departure from intended exposures, missing data, and reported results.
Kay, 2020 ³²	231	Children, 24 to 34 mo non-HM fed; North Carolina, Florida, California, New York Data source: Greenlight Intervention Study, a cluster RCT	Low income < \$19,999; Higher income ≥ \$20K; WIC participation v. not	HEI- 2010	Low income, 62.9 (10.3) v. Higher income, 62.8 (10.7); NS WIC benefits, 62.8 (10.5) v. not, 63.4 (10.4); NS	Did not account for confounders of: Urban vs. Rural; Some concerns with selection into study, missing data, and outcome measurement. Limited generalizability

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
Kinderknecht, 2020 ³³	6389	Children, 5 to 18 y, participating in NSL; National dataset Data source: NHANES, 2007-2016	NSLP participation or not, before and after Healthy, Hunger-Free Kids Act (HHFKA); Income: ≤130% poverty threshold (low); >130%-≤185% poverty threshold (low-middle); and >185% poverty threshold (middle-high)	HEI- 2010	Stratified by income, difference between before and after HHFKA for NSLP participants v. nonparticipants: low income, 3.4 95% CI: 0.5,6.3, p=0.02; low-middle income, 4.7 95% CI: 0.8,8.7, p=0.02; middle-high income, 1.9 95% CI: -0.08,4.5; NS	Did not account for confounders of: Urban vs. Rural; Food security; Serious or some concerns with selection into study, classification of exposures, departure from intended exposures, missing data, and reported results. Limited generalizability
Liu, 2020 ³⁹	31420	Children, 2 to 19 y: National dataset Data source: NHANES 1999-2016	PIR: <1.30, 1.30- 1.849, 1.85-2.99, ≥3.00 SNAP: Yes/No WIC: Yes/No NSLP/SBP: Yes/No	HEI- 2015	2007-08 PIR: <1.30, 1.30-1.849, 1.85-2.99, ≥3.00]: 48.1 (46.4, 49.7), 46.0 (44.6, 47.4), 47.0 (45.3, 48.8), 49.1 (47.7, 50.5); SNAP Yes: 47.0 (45.4, 48.6), No: 48.5 (47.3, 49.7) WIC Yes: 49.7 (48.4, 51.0), No: 47.9 (46.7, 49.1) NSLP/SBP Yes: 46.4 (45.1, 47.6), No: 48.9 (47.6, 50.2) $\frac{2009-10}{2009-10}$ PIR: <1.30, 1.30-1.849, 1.85-2.99, ≥3.00]: 48.6 (47.4, 49.8), 50.0 (47.6, 52.5), 49.4 (47.2, 51.7), 50.0 (48.9, 51.1) SNAP Yes: 49.2 (48.1, 50.2), No: 49.7 (48.5, 50.8) WIC Yes: 51.5 (49.9, 53.0), No: 49.2 (48.2, 50.2) NSLP/SBP Yes: 48.2 (47.3, 49.0), No: 50.2 (49.1, 51.4) $\frac{2011-12:}{2011-12:}$ PIR: <1.30, 1.30-1.849, 1.85-2.99, ≥3.00: 50.0 (48.9, 51.1), 51.2 (49.7, 52.7), 50.1 (48.5, 51.8), 53.4 (51.6, 55.2) SNAP Yes: 49.6 (48.7, 50.5), No: 52.0 (51.2, 52.8) WIC Yes: 52.8 (51.2, 54.5), No: 51.0 (50.1, 51.8) NSLP/SBP Yes: 49.2 (48.3, 50.1), No:	Serious risk due to confounding due to not accounting for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Sex; Age; Food security

Article*	N	Population	Exposure	Outcome		Summary of Limitations
					52.3 (51.4, 53.3) 2013-14: PIR: <1.30, 1.30-1.849, 1.85- 2.99, ≥3.00: 49.6 (48.2, 51.1), 49.9 (48.2, 51.7), 49.3 (47.6, 50.9), 50.7 (48.7, 52.8) SNAP Yes: 50.1 (48.9, 51.2), No: 49.9 (48.8, 51.1) WIC Yes: 51.3 (49.3, 53.2), No: 49.7 (48.8, 50.6) NSLP/SBP Yes: 49.2 (48.0, 50.3), No: 50.4 (49.2-51.5) 2015-16 (no SNAP or WIC data this cycle): PIR: <1.30, 1.30-1.849, 1.85-2.99, ≥3.00: 48.3 (46.7, 49.9), 48.8 (47.2, 50.4), 50.7 (48.8, 52.7), 50.1 (48.3, 51.9); NSLP/SBP Yes: 47.9 (46.6, 49.2), No: 50.8 (49.5, 52.1)	
Tovar, 2020 ⁵⁵	119	Child-care centers with providers and 374 children; Providence, Rhode Island <u>Data source:</u> Healthy	Income: <\$25k, \$25,001-\$50k, \$75k+ Federal: Receives CACFP subsidies (Yes/No)	HEI- 2015	Income: <\$25k (ref); \$25,001-\$50k, β =2.9 [3.0], p=0.3; \$75k+, β =-5.6 [4.0] p=0.17, NS CACFP: No (ref); Yes; β =4.6 [2.6], p=0.08, NS	Did not account for confounders of: Urban vs. Rural; Age; Food security; Serious/some concerns on most domains of bias
		Start/Comienzos Sanos				
Weinfield, 2021 ⁵⁹	1223	Dyads of Mothers with child ~ 3 y; National dataset Data source: Special Supplemental Nutrition Program for WIC Infant and Toddler Feeding Practices Study-2	Poverty: >130% poverty threshold, 75% or less, >75% and <130% poverty threshold WIC Duration: Low, Intermediate, High	HEI- 2015	Adjusted model WIC duration: Low (ref); Intermediate, β =0.36, 95% CI: 0.04, 0.69, p=0.03; High, β =0.41, 95% CI: 0.12, 0.71, p=0.007 Unadjusted model Poverty threshold: >130% (ref); 75% or below, β =0.86, 95% CI: -0.64, 2.35, NS; 75%+ and <130%, β =0.16, 95% CI: -0.88, 1.20, NS	Did not account for confounders of: Urban vs. Rural; Food security; Serious concerns with departure from intended exposures; Indirectly compared exposure via WIC duration
			Feder	al particina	tion/ eligibility	
Allen, 2016 ⁶	1741	Adults, 30 to 64 y; Baltimore, Maryland	SNAP participation v. not	HEI- 2010	SNAP: -2.74 [0.90], p=0.002 Food insecurity * SNAP: -0.80 [0.39],	Some concerns with selection bias due to missing f/u; Methods

Article*	N	Population	Exposure	Outcome		Summary of Limitations
		<u>Data source:</u> HANDLS			p=0.042 Covariate of PIR was significant predictor of HEI: -1.14 [0.57], p=0.044	used to assess exposure not well defined; Some concerns with departure from intended exposure due to SNAP status instability
Condon, 2015a ¹³	16689	Children and Adults, ≥2 y; National dataset Data source: NHANES, 2007-2010; MPED 2.0; CNPP Fact Sheet No. 1, 2006	SNAP: eligibility and participation	HEI- 2005	SNAP (ref) v. income eligible nonparticipants v. higher income nonparticipants: All ages: 56.8 v. 60.3, p<0.05 v. 60.2, p<0.05; Children: 57.9 v. 61.0, p<0.05 v. 59.0, NS; Adults: 53.9 v. 58.2, p<0.05 v. 59.0, p<0.05; Older adults: 64.0 v. 65.6, NS v. 65.6, NS; ≥16 y, matched SNAP-eligible participants, n=975 v. nonparticipants, n=572: 54.1 v. 55.8, NS	Did not account for confounders of: Urban vs. Rural; Some concerns with selection into study, departure from intended exposure, and missing data
Nguyen, 2014 ⁴¹	4211	Adults, 20 to 64 y; National dataset Data source: NHANES, 2003-2010	SNAP participation v. income eligible non-participants determined by PIR or ≤ 130% poverty threshold	HEI- 2010	SNAP participants 42.58 [0.33] v. eligible, nonparticipants 44.36 [0.27], p≤0.001. Sensitivity analyses revealed effects by sex, ethnicity, and security status.	Did not account for confounders of: Cultural/racial diversity or disparities; Sex; Age; Food security; Exposure/comparator was not directly related to question of interest
Nguyen, 2015 ⁴²	8333	Adults, ~46 y, all low-income; National dataset <u>Data source:</u> NHANES, 2003-2010	SNAP participation	HEI- 2010	Overall: β = -3.18 [0.53] p<0.01 SNAP + marginal food security: β =3.46 [0.99] p<0.01; SNAP + low food security: β =1.98 [0.88], p<0.05; SNAP + very low food security: β =3.84 [1.04] p<0.01	Did not account for confounders of: Urban vs. Rural; Some concerns with selection into study, classification of exposures, and departure from intended exposure. Limited generalizability
Singleton, 2020 ⁴⁹	14331	Adults, ≥18 y; National dataset <u>Data source:</u> NHANES, 2009-2014	SNAP participation, eligible non- participants, ineligible non- participants via PIR	HEI- 2015	SNAP Participants: PIR: β=0.24 [0.26], NS; Eligible Nonparticipants: PIR: β=-0.34 [1.17], NS; Ineligible Nonparticipants: PIR: β=0.58 [0.17]	Did not account for confounders of: Urban vs. Rural; Serious concerns with departure from intended exposures
Todd, 2015 ⁵⁴	1480	Adults, ~ 41y, all SNAP participants; National dataset	SNAP participation (days since received)	HEI- 2010	β= -0.090 [0.033], p<0.05	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
		<u>Data source:</u> NHANES, 2007-2010				disparities; Sex; Age; Limited generalizability
Bremer, 2018 ²	146	Adults, > 18 y, from the intervention group of the trial; southwestern Virginia Data source: SIPsmartER trial	SNAP-participants, SNAP-eligible nonparticipants, and Ineligible- nonparticipants	HEI- 2010	At baseline, SNAP participants v. Eligible, nonparticipants v. Ineligible: 39.2 (10.8) v. 42.1 (13.6) v. 45.7 (12.5), p=0.160; NS After 6 mo, SNAP participants v. Eligible, nonparticipants v. Ineligible: 41.3 (10.7) v. 42.2 (11.3) v. 50.8 (14.0), p=0.160; NS	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with classification of exposure due to self-selection/proxy calculations; Some concerns with departure from intended exposure due to lack of accounting for food insecurity/hunger;
Condon, 2015b ¹⁴	5814	Children in school, 5 to 18 y; National dataset Data source: NHANES, 2005-2010	NSLP participants v. nonparticipants (all income eligible for free/RP meals) NSLP participants v. nonparticipants (all higher income)	HEI- 2005	NSLP participants v. nonparticipants (all free/RP meals): 60.5 [1.24] v. 55.1 [1.23], p<0.05 In 5-8 y, NS; In 9-13 y, 61.3 [1.75] v. 54.2 [1.78], p<0.01 (similar results by sex in boys and girls); In 14-18 y, NS NSLP participants v. nonparticipants (all higher income): 56.8 [1.19] v. 57.1 [1.31], NS In 5-8 y, NS; In 9-13 y, NS; In 14-18 y, NS	Did not account for confounders of: Urban/rural, Cultural/racial diversity or disparities; Food security; Some concerns with selection into study (excluded children who bring lunch from home), departure from intended exposure, and missing data.
Fox, 2019 ¹⁹	4141	Children in Elementary, Middle, and High school; National dataset Data source: School Nutrition and Meal Cost Study	NSLP participation v. not; SBP participation v. not	HEI- 2010	NSLP vs nonparticipants: Elementary-school: 65.1 v. 60.8, NS Middle-school: 65.9 v. 62.9, NS High-school: 63.6 v. 59.7, NS All students: 65.2 v. 60.6, p<0.05 SBP vs nonparticipants: Elementary-school: 66.4 v. 63.4, NS Middle-school: 63.7 v. 64.9, NS High-school: 63.8 v. 59.8, p<0.05 All students: 65.5 v. 62.8, NS	Did not account for confounders of: Food security
Gearan, 2020 ²¹	2165	Children, 6 to 19 y; National dataset <u>Data source:</u> School Nutrition and Meal Cost Study	NSLP participation or not on day of 24 hour recall (9% missing data imputed)	HEI- 2010	NSLP v. nonparticipants: 65% v. 61%, p<0.05 24h intake, both lower-income: 65.3 v. 61.4; difference: 3.9; NS 24h intake, both higher-income: 65 v. 60.9, difference: 4, p<0.05 Lunch intakes, both lower-income:	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns related to missing data

Article*	N	Population	Exposure	Outcome		Summary of Limitations
					79.8 v. 68.0, difference: 11.8, p<0.05 Lunch intakes, both higher-income: 80.5 v. 62.1,difference: 18.4, p<0.05	
Gregory, 2013 ²³	5105	Households of all low- income participants ≤ 200% poverty threshold; National dataset Data source:	SNAP participation v. nonparticipation over 12 mo	HEI- 2005	SNAP: 51.02 v. Non-SNAP 47.49, p<0.01 SNAP v. Non-SNAP: OLS marginal effects -0.66 [0.65], NS SNAP v. Non-SNAP: MFX Tx effects MLE -1.56 [0.25], p<0.01	Did not account for confounders of: Urban vs. Rural; Food security; Some concerns with classification of exposure and departure from intended exposure; Limited generalizability
		NHANES, 2003-2008; ERS				
Hearst, 2016 ²⁷	739	Children/Adolescents, 9th to 10th grade; rural Minnesota	NSLP status: free/reduced price lunch v. full-price	HEI- 2010	Free/Red. cost lunch v. Full-price lunch: β= -0.60 [0.79], p=0.45, NS	Did not account for confounders of: Food security; Some concerns with selection into study,
		<u>Data source:</u> Fueling Academics and Strengthening Teens Study (Break-FAST)	lunch		Full-price lunch, n=472: 51.8 v. Free/Red. cost lunch, n=267: 52.1, NS	departure from intended exposures, and missing data.
Hudak, 2021 ²⁹	2797	Children, 2 to 18 y: National dataset	SNAP-eligible <150% poverty threshold; Nearly	HEI- 2010	pre-ARRA: SNAP-eligible, 46.4 [1.02] v. nearly eligible 43.7 [1.00]; NS	Did not account for confounders of: Urban vs. Rural; Some concerns with selection into study
		<u>Data source:</u> NHANES, 2007-2008; 2011-2012	SNAP-eligible between 150% and 250% poverty		post-ARRA: SNAP-eligible, 47.3 [0.73] v. nearly eligible 46.6 [0.73]; NS	and classification of exposures; Serious concerns due to departure from intended
		2011 2012	threshold		SNAP benefit increase, overall before v. after ARRA: -1.99	exposures.
					ARRA-increase by age: Toddlers 2-3y, n=665: 2.55 [3.47]; Preschoolers 4-5y, n=550: -2.61 [3.01]; Children 6-11 y, n=1186: -2.86 [2.48]; Adolescents 12- 18y, n=1186: -4.61 (2.21), p<0.05	
Landry, 2019 ³⁵	598	Children, 3rd to 5th grade; Austin, Texas	SNAP Participation: Yes/No	HEI- 2015	Unadjusted: SNAP Participation: Yes (ref); No, β=1.6, SE: 1.25, 95% CI: -0.85, 4.05, p=0.200, NS	Did not account for confounders of: Urban vs. Rural; Some concerns with departure from
		<u>Data source:</u> TX Sprouts				intended exposures, missing data, outcome measurement, and reported results.

Article*	N	Population	Exposure	Outcome		Summary of Limitations
Leung, 2012 ³⁷	3835	Adults, non-elderly: National dataset Data source: NHANES 1999-2008	SNAP Participants vs. non-participants	HEI- 2005	HEI: SNAP Nonparticipants (ref), SNAP Participants, RD=0.98, 95% CI: 0.94, 1.02, NS	Accounted for confounders; Some concerns with departure from intended exposures (i.e. variation in SNAP status), missing data, and reported results.
Leung, 2013 ³⁸	5193	Children, 4 to 19 y, all low-income ≤ 130% poverty threshold: National dataset Data source: NHANES, 1999-2008	SNAP participants v. income eligible non-participants (former participants within last 12 mo were excluded)	HEI- 2005	SNAP Nonparticipants, 47.2 (0.5) v. participants, 45.6 (0.6), NS	Did not account for confounders of: Urban vs. Rural; Some concerns with departure from intended exposures, missing data, and reported results.
Sanjeevi, 2021 ⁴⁷	Adult: 2784; Child: 2553	Adults and Children, 3 to 75 y, all low-income; National dataset Data source: NHANES 2011-2016	SNAP current v. former participants with benefits cut off in past year; cut off for >1 y	HEI- 2015	Adults: Current SNAP (ref); Benefits cut off in past year: β =0.02 [1.25], p=0.99, NS; Benefits cut off >1 y: β =-0.66 [0.94], p=0.49, NS Children: Current SNAP (ref); Benefits cut off in past year: β =-0.03 [1.58], p=0.99, NS; Benefits cut off >1 y: β = -1.34 [0.99], p=0.18, NS	Did not account for confounders of: Urban vs. Rural; Serious concerns with departure from intended exposures; Limited generalizability
Thomas Berube, 2019 ⁵¹	519	Adults, all Hispanic women who are pregnant; New York City, New York Data source: Starting Early Trial	WIC Participation (yes/no) SNAP Participation (yes/no)	HEI- 2015	WIC Participation: No (ref), Yes, β =2.1, 95% CI: -0.1, 4.4, p=0.06, NS SNAP: No (ref), Yes, β =-0.3, 95% CI: -1.9, 1.3, p=0.73, NS	Did not account for confounders of: Urban vs. Rural; Cultural/racial diversity or disparities; Food security; Limited generalizability
Waehrer, 2015 ⁵⁶	4158	Adults, ≥ 19 y; National dataset Data source: NHANES, 2007-2010	SNAP eligible (≤ 150% poverty threshold) v. ineligible (150- 250% poverty threshold)	HEI- 2005	pre-ARRA ≤ 150%: 53.9; post-ARRA ≤ 150%: 53.5, NS pre-ARRA 150-250%: 54.9; post-ARRA 150-250%: 56.6, NS	Did not account for confounders of: Urban vs. Rural; Food security; Exposure was not directly related to the question of interest
Wang, 2021 ⁵⁷	157	Adults, all older adults/adults with disabilities receiving Supplemental Security	SNAP eligibility and participation	HEI- 2015	Mean HEI-2015 score SNAP non-recipient, n=43: 45.8 v. recipient, n=114: 45.0, NS Expansion: baseline, n=213: 44.3 v. follow-up, n=157: 43.6, NS	Did not account for confounders of: Urban vs. Rural; Food security; Serious concerns due to missing data; Exposure was not

Article*	N	Population	Exposure	Outcome	Results [†]	Summary of Limitations
		Income (SSI);				directly related to the question of
		California				interest
		Data source: N/A				

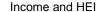
^a Abbreviations: ARRA, American Recovery and Reinvestment Act of 2008; EFNEP, Expanded Food and Nutrition Education Program; FPG, Federal Poverty Guidelines; HANDLS, Healthy Aging in Neighborhoods of Diversity across the Life Span Study; HEI, healthy eating index; Healthy, Hunger-Free Kids Act (HHFKA); HH, household; mo, months; N/A, not applicable or available; NHANES, National Health and Nutrition Examination Survey; NSLP, National School Lunch Program; NS, not statistically significant; % percent; PIR: poverty-to-income ratio; SBP, School Breakfast Program; SNAP, Supplemental Nutrition Assistance Program; SSI, Supplemental Security Income; WIC, Supplemental Assistance Program for Women, Infants and Children; y, years

Table 2-c. Risk of bias for observational studies examining income and HEI^a

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Beydoun, 2018 ¹ *PCS	SERIOUS	LOW	MODERATE	SERIOUS	MODERATE	MODERATE	SERIOUS
Bremer, 2018 ² *PCS	SERIOUS	MODERATE	MODERATE	SERIOUS	MODERATE	MODERATE	LOW
Covington, 2020 ³ *PCS	SERIOUS	MODERATE	LOW	LOW	MODERATE	LOW	MODERATE
Taverno Ross, 2020 ⁴ *PCS	SERIOUS	MODERATE	MODERATE	LOW	MODERATE	MODERATE	MODERATE
Aggarwal, 2016 ⁵	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Allen, 2016 ⁶	SERIOUS	SERIOUS	MODERATE	SERIOUS	MODERATE	LOW	LOW
Beatty, 2014 ⁷	SERIOUS	MODERATE	MODERATE	MODERATE	LOW	SERIOUS	SERIOUS
Bekelman, 20218	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	LOW
Beydoun, 2015 ⁹	MODERATE	SERIOUS	LOW	MODERATE	MODERATE	LOW	MODERATE
Byker Shanks, 2020 ¹⁰	MODERATE	MODERATE	LOW	LOW	LOW	LOW	MODERATE
Chen, 2018 ¹¹	MODERATE	MODERATE	LOW	LOW	LOW	MODERATE	LOW
Coltman, 2013 ¹²	CRITICAL	SERIOUS	LOW	MODERATE	MODERATE	LOW	MODERATE
Condon, 2015a ¹³	MODERATE	MODERATE	LOW	MODERATE	SERIOUS	MODERATE	MODERATE
Condon, 2015b ¹⁴	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Deierlein, 2014 ¹⁵	LOW	MODERATE	LOW	MODERATE	LOW	LOW	MODERATE
Deierlein, 2021 ¹⁶	MODERATE	SERIOUS	LOW	SERIOUS	LOW	LOW	MODERATE

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Drewnowski, 2016 ¹⁷	LOW	MODERATE	MODERATE	MODERATE	LOW	LOW	MODERATE
Flórez, 2015 ¹⁸	LOW	LOW	MODERATE	MODERATE	MODERATE	MODERATE	MODERATE
Fox, 2019 ¹⁹	MODERATE	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Freedman, 2019 ²⁰	LOW	MODERATE	MODERATE	MODERATE	LOW	LOW	MODERATE
Gearan, 2020 ²¹	SERIOUS	MODERATE	LOW	LOW	MODERATE	LOW	LOW
Gibbs, 2016 ²²	SERIOUS	MODERATE	LOW	LOW	LOW	LOW	LOW
Gregory, 2013 ²³	SERIOUS	MODERATE	MODERATE	MODERATE	LOW	LOW	MODERATE
Gu, 2017 ²⁴	SERIOUS	MODERATE	LOW	SERIOUS	LOW	LOW	MODERATE
Gupta, 2020 ²⁵	LOW	MODERATE	LOW	MODERATE	LOW	LOW	SERIOUS
Hanson, 2013 ²⁶	SERIOUS	MODERATE	SERIOUS	SERIOUS	MODERATE	LOW	SERIOUS
Hearst, 2016 ²⁷	MODERATE	SERIOUS	LOW	MODERATE	MODERATE	LOW	MODERATE
Hill, 2020 ²⁸	SERIOUS	SERIOUS	MODERATE	MODERATE	MODERATE	LOW	MODERATE
Hudak, 2021 ²⁹	MODERATE	MODERATE	MODERATE	SERIOUS	MODERATE	LOW	LOW
Huffman, 2014 ³⁰	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Kane, 2018 ³¹	SERIOUS	SERIOUS	MODERATE	MODERATE	MODERATE	LOW	SERIOUS
Kay, 2020 ³²	SERIOUS	MODERATE	LOW	LOW	MODERATE	MODERATE	LOW
Kinderknecht, 2020 ³³	SERIOUS	MODERATE	SERIOUS	MODERATE	SERIOUS	LOW	SERIOUS

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Kuczmarski, 2016 ³⁴	MODERATE	MODERATE	LOW	MODERATE	LOW	LOW	LOW
Landry, 2019 ³⁵	MODERATE	MODERATE	LOW	MODERATE	MODERATE	MODERATE	MODERATE
Laster, 2013 ³⁶	SERIOUS	MODERATE	MODERATE	LOW	LOW	LOW	LOW
Leung, 2013 ³⁸	MODERATE	MODERATE	LOW	MODERATE	SERIOUS	LOW	MODERATE
Leung, 2012 ³⁷	LOW	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Liu, 2020 ³⁹	SERIOUS	MODERATE	MODERATE	MODERATE	MODERATE	LOW	MODERATE
Martin, 2015 ⁴⁰	SERIOUS	MODERATE	LOW	LOW	MODERATE	LOW	LOW
Nguyen, 2014 ⁴¹	MODERATE	MODERATE	MODERATE	MODERATE	LOW	LOW	LOW
Nyguen, 2015 ⁴²	MODERATE	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Nowlin, 2016 ⁴³	SERIOUS	MODERATE	LOW	SERIOUS	MODERATE	LOW	SERIOUS
Orr, 2019 ⁴⁴	MODERATE	SERIOUS	LOW	MODERATE	MODERATE	LOW	MODERATE
Patetta, 2019 ⁴⁵	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Richards Adams, 2019 ⁴⁶	MODERATE	SERIOUS	LOW	MODERATE	LOW	LOW	MODERATE
Sanjeevi, 2021 ⁴⁷	MODERATE	MODERATE	LOW	SERIOUS	MODERATE	LOW	SERIOUS
Shan, 2019 ⁴⁸	SERIOUS	MODERATE	LOW	MODERATE	SERIOUS	LOW	LOW
Singleton, 2020 ⁴⁹	MODERATE	MODERATE	MODERATE	SERIOUS	MODERATE	LOW	MODERATE
Springfield, 2019 ⁵⁰	SERIOUS	SERIOUS	LOW	LOW	LOW	LOW	LOW


Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Thomas Berube, 2019 ⁵¹	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	MODERATE
Thomson, 2020 ⁵³	SERIOUS	MODERATE	LOW	MODERATE	SERIOUS	LOW	LOW
Thomson, 2019 ⁵²	SERIOUS	LOW	MODERATE	SERIOUS	MODERATE	LOW	LOW
Todd, 2015 ⁵⁴	SERIOUS	MODERATE	SERIOUS	MODERATE	MODERATE	LOW	MODERATE
Tovar, 2020 ⁵⁵	SERIOUS	MODERATE	MODERATE	MODERATE	No Information	LOW	SERIOUS
Waehrer, 2015 ⁵⁶	MODERATE	SERIOUS	LOW	MODERATE	LOW	LOW	LOW
Wang, 2021 ⁵⁷	SERIOUS	LOW	LOW	LOW	LOW	LOW	MODERATE
Weatherspoon, 2017 ⁵⁸	MODERATE	SERIOUS	MODERATE	SERIOUS	MODERATE	MODERATE	MODERATE
Weinfield, 2021 ⁵⁹	SERIOUS	MODERATE	LOW	SERIOUS	MODERATE	LOW	LOW
Wilcox, 2020 ⁶⁰	SERIOUS	MODERATE	LOW	SERIOUS	MODERATE	LOW	MODERATE

^a Possible ratings of low, moderate, serious, critical, or no information determined using the "Risk of Bias for Nutrition Observational Studies" tool (RoB-NObs) (Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.)

References of the articles included in the income and HEI rapid review

- Beydoun MA, Fanelli-Kuczmarski MT, Poti J, et al. Longitudinal change in the diet's monetary value is associated with its change in quality and micronutrient adequacy among urban adults. *PLoS One.* 2018;13(10):e0204141. doi: 10.1371/journal.pone.0204141. eCollection 2018.
- 2. Bremer MC, Zoellner JM, Misyak SA, Hedrick VE. Dietary intake changes in response to a sugar-sweetened beverage reduction trial for various supplemental nutrition assistance program (SNAP) eligibility groups. *J Nutr Educ Behav.* 2018;50(9):931-936. doi: 10.1016/j.jneb.2018.07.010.
- Covington L, Armstrong B, Trude ACB, Black MM. Longitudinal associations among diet quality, physical activity and sleep onset consistency with body mass index z-score among toddlers in low-income families. *Ann Behav Med.* 2020. doi: 10.1093/abm/kaaa100.
- 4. Taverno Ross SE, Militello G, Dowda M, Pate RR. Changes in diet quality in youth living in south carolina from fifth to 11th grade. *J Nutr Educ Behav*. 2020;52(10):928-934. doi: 10.1016/j.jneb.2020.03.001. Epub 2020 Apr 23.
- 5. Aggarwal A, Rehm CD, Monsivais P, Drewnowski A. Importance of taste, nutrition, cost and convenience in relation to diet quality: Evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007-2010. *Prev Med.* 2016:90:184-192. doi: 10.1016/j.vpmed.2016.06.030. Epub 2016 Jun 29.
- 6. Allen AJ, Kuczmarski MF, Evans MK, Zonderman AB, Waldstein SR. Race differences in diet quality of urban food-insecure blacks and whites reveals resiliency in blacks. *J Racial Ethn Health Disparities*. 2016;3(4):706-712. doi: 10.1007/s40615-015-0189-5. Epub 2015 Dec 10.
- 7. Beatty TKM, Lin B-H, Smith TA. Is diet quality improving? Distributional changes in the United States, 1989–2008. *American Journal of Agricultural Economics*. 2014;96(3):769-789. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=95479693&site=ehost-live.
- 8. Bekelman TA, Sauder KA, Rockette-Wagner B, Glueck DH, Dabelea D. Sociodemographic predictors of adherence to national diet and physical activity guidelines at age 5 years: the healthy start study. *Am J Health Promot.* 2021;35(4):514-524. doi: 10.1177/0890117120968654. Epub 2020 Oct 29.
- 9. Beydoun MA, Fanelli-Kuczmarski MT, Allen A, et al. Monetary value of diet Is associated with dietary quality and nutrient adequacy among urban adults, differentially by sex, race and poverty status. *PLoS One.* 2015;10(11):e0140905. doi: 10.1371/journal.pone.0140905. eCollection 2015.
- 10. Byker Shanks C, Ahmed S, Dupuis V, et al. Dietary quality varies among adults on the Flathead Nation of the Confederated Salish and Kootenai tribes in Montana. *J Community Health*. 2020;45(2):388-399. doi: 10.1007/s10900-019-00753-3.
- 11. Chen XW, Cisse-Egbuonye N, Spears EC, Mkuu R, McKyer ELJ. Children's healthy eating habits and parents' sociodemographic characteristics in rural Texas, USA. *Health Educ J.* 2018;77(4):444-457. <Go to ISI>://WOS:000436036400005.
- 12. Coltman AE, Keim KS, Chapman-Novakofski KM, Taylor CA. Assessing diet quality of a type 2 diabetes sample using the Healthy Eating Index 2005. *Top Clin Nutr.* 2013;28(2):145-153. <Go to ISI>://WOS:000209552700005.
- 13. Condon E, Drilea S, Jowers K, et al. *Diet quality of americans by SNAP participation status: Data from the National Health and Nutrition Examination Survey, 2007-2010.* Mathematica Policy Research;2015.
- 14. Condon E, Drilea S, Lichtenstein C, Mabli J, Madden E, Niland K. *Diet quality of Americans by NSLP participation status: Data from the National Health and Nutrition Examination Survey, 2005-2010.* Walter R. McDonald & Associates, Inc, and Mathematica Policy Research;2015.
- 15. Deierlein AL, Morland KB, Scanlin K, Wong S, Spark A. Diet quality of urban older adults age 60 to 99 years: the Cardiovascular Health of Seniors and Built Environment Study. *J Acad Nutr Diet.* 2014;114(2):279-287. doi: 10.1016/j.jand.2013.09.002. Epub 2013 Nov 18.
- 16. Deierlein AL, Ghassabian A, Kahn LG, et al. Dietary quality and sociodemographic and health behavior characteristics among pregnant women participating in the New York university children's health and environment study. *Front Nutr.* 2021;8:639425. doi: 10.3389/fnut.2021.639425. eCollection 2021.
- 17. Drewnowski A, Aggarwal A, Cook A, Stewart O, Moudon AV. Geographic disparities in Healthy Eating Index scores (HEI-2005 and 2010) by residential property values: Findings from Seattle Obesity Study (SOS). *Prev Med.* 2016;83:46-55. doi: 10.1016/j.ypmed.2015.11.021. Epub 2015 Dec 3.
- 18. Flórez KR, Dubowitz T, Ghosh-Dastidar MB, Beckman R, Collins RL. Associations between depressive symptomatology, diet, and body mass index among participants in the supplemental nutrition assistance program. *J Acad Nutr Diet.* 2015;115(7):1102-1108. doi: 10.1016/j.jand.2015.01.001. Epub 2015 Mar 10.
- 19. Fox MK, Gearan E, Cabili C, et al. School nutrition and meal cost study final report volume 4: Student participation, satisfaction, plate waste, and dietary intakes. Mathematica Policy Research;2019.
- 20. Freedman DA, Bell BA, Clark JK, et al. Socioecological path analytic model of diet quality among residents in two urban food deserts. *J Acad Nutr Diet.* 2019;119(7):1150-1159. doi: 10.1016/j.jand.2019.02.012. Epub 2019 Apr 25.
- 21. Gearan EC, Monzella K, Jennings L, Fox MK. Differences in diet quality between school lunch participants and nonparticipants in the United States by income and race. *Nutrients*. 2020;12(12). doi: 10.3390/nu12123891.
- 22. Gibbs HD, Kennett AR, Kerling EH, et al. Assessing the nutrition literacy of parents and its relationship with child diet quality. *J Nutr Educ Behav.* 2016;48(7):505-509.e501. doi: 10.1016/j.jneb.2016.04.006. Epub 2016 May 20.

- 23. Gregory C, Ver Ploeg M, Andrews M, Coleman-Jensen A. Supplemental Nutrition Assistance Program (SNAP) participation leads to modest changes in diet quality. 2013:36.
- 24. Gu X, Tucker KL. Dietary quality of the US child and adolescent population: trends from 1999 to 2012 and associations with the use of federal nutrition assistance programs. *Am J Clin Nutr.* 2017;105(1):194-202. doi: 10.3945/ajcn.116.135095. Epub 2016 Nov 23.
- 25. Gupta NR, Freedman DA. Food security moderates relationship between perceived food environment and diet quality among adults in communities with low access to healthy food retail. *Pub Health Nutr.* 2020:1-12. doi: 10.1017/S1368980020001317.
- 26. Hanson KL, Olson CM. School meals participation and weekday dietary quality were associated after controlling for weekend eating among U.S. school children aged 6 to 17 years. *J Nutr.* 2013;143(5):714-721. doi: 10.3945/jn.112.170548. Epub 2013 Mar 13.
- 27. Hearst MO, Harnack LJ, Wang Q, Nanney MS. Dietary quality of diverse, rural adolescents using the Healthy Eating Index 2010. *Health Behav Policy Rev.* 2016;3(6):519-527. doi: 10.14485/HBPR.3.6.1.
- 28. Hill AM, Nunnery DL, Ammerman A, Dharod JM. Racial/ethnic differences in diet quality and eating habits among WIC pregnant women: Implications for policy and practice. *Am J Health Promot.* 2020;34(2):169-176. doi: 10.1177/0890117119883584. Epub 2019 Oct 28.
- 29. Hudak KM, Racine EF, Schulkind L. An increase in SNAP benefits did not impact food security or diet quality in youth. *J Acad Nutr Diet.* 2021;121(3):507-519.e512. doi: 10.1016/j.jand.2020.09.030. Epub 2020 Nov 10.
- 30. Huffman FG, Vaccaro JA, Zarini GG, Dixon Z. Comparison of two indices of diet quality with acculturation factors and demographics in Haitian Americans. *Ecol Food Nutr.* 2014;53(1):42-57. <u>Go to ISI>://WOS:000329775200003.</u>
- 31. Kane K, Ilic S, Paden H, et al. An evaluation of factors predicting diet quality among cancer patients. *Nutrients*. 2018;10(8). doi: 10.3390/nu10081019.
- 32. Kay MC, Silver HJ, Yin HS, et al. Assessing diet quality in a racially and ethnically diverse cohort of low-income toddlers. *J Pediatr Gastroenterol Nutr.* 2020;71(5):679-685. doi: 10.1097/MPG.000000000002871.
- 33. Kinderknecht K, Harris C, Jones-Smith J. Association of the Healthy, Hunger-Free Kids Act with dietary quality among children in the US National School Lunch Program. *Jama*. 2020;324(4):359-368. doi: 10.1001/jama.2020.9517.
- 34. Kuczmarski MF, Beydoun MA, Cotugna N, et al. Literacy contributes to greater higher diet quality in a socioeconomically diverse urban prospective cohort. *Top Clin Nutr.* 2016;31(1):47-58. <a href="mailto:square: 40.5000/scale-2016/s0000/scale-2016/socio-2016/scale-2016/socio-2016/scale-2
- 35. Landry MJ, van den Berg AE, Asigbee FM, Vandyousefi S, Ghaddar R, Davis JN. Child-report of food insecurity is associated with diet quality in children. *Nutrients*. 2019;11(7). doi: 10.3390/nu11071574.
- 36. Laster LE, Lovelady CA, West DG, et al. Diet quality of overweight and obese mothers and their preschool children. *J Acad Nutr Diet.* 2013;113(11):1476-1483. doi: 10.1016/j.jand.2013.05.018. Epub 2013 Jul 16.
- 37. Leung CW, Ding EL, Catalano PJ, Villamor E, Rimm EB, Willett WC. Dietary intake and dietary quality of low-income adults in the Supplemental Nutrition Assistance Program. *Am J Clin Nutr.* 2012;96(5):977-988. doi: 10.3945/ajcn.112.040014. Epub 2012 Oct 3.
- 38. Leung CW, Blumenthal SJ, Hoffnagle EE, et al. Associations of food stamp participation with dietary quality and obesity in children. *Pediatrics*. 2013;131(3):463-472. doi: 10.1542/peds.2012-0889. Epub 2013 Feb 25.
- 39. Liu J, Rehm CD, Onopa J, Mozaffarian D. Trends in diet quality among youth in the United States, 1999-2016. *Jama*. 2020;323(12):1161-1174. doi: 10.1001/jama.2020.0878.
- 40. Martin MA, Van Hook JL, Quiros S. Is socioeconomic incorporation associated with a healthier diet? Dietary patterns among Mexican-origin children in the United States. *Soc Sci Med.* 2015;147:20-29. <Go to ISI>://WOS:000367637100003.
- 41. Nguyen BT, Shuval K, Njike VY, Katz DL. The Supplemental Nutrition Assistance Program and dietary quality among US adults: findings from a nationally representative survey. *Mayo Clin Proc.* 2014;89(9):1211-1219. doi: 10.1016/i.mayocp.2014.05.010. Epub 2014 Aug 5.
- 42. Nguyen BT, Shuval K, Bertmann F, Yaroch AL. The Supplemental Nutrition Assistance Program, food insecurity, dietary quality, and obesity among U.S. adults. *Am J Public Health*. 2015;105(7):1453-1459. doi: 10.2105/AJPH.2015.302580. Epub 2015 May 14.
- 43. Nowlin SY, Cleland CM, Vadiveloo M, D'Eramo Melkus G, Parekh N, Hagan H. Explaining racial/ethnic dietary patterns in relation to type 2 diabetes: an analysis of NHANES 2007-2012. *Ethn Dis.* 2016;26(4):529-536. doi: 10.18865/ed.26.4.529.
- 44. Orr CJ, Keyserling TC, Ammerman AS, Berkowitz SA. Diet quality trends among adults with diabetes by socioeconomic status in the U.S.: 1999-2014. *BMC Endocr Disord*. 2019;19(1):54. doi: 10.1186/s12902-019-0382-3.
- 45. Patetta MA, Pedraza LS, Popkin BM. Improvements in the nutritional quality of US young adults based on food sources and socioeconomic status between 1989-1991 and 2011-2014. *Nutr J.* 2019;18(1):32. doi: 10.1186/s12937-019-0460-4.
- 46. Richards Adams IK, Figueroa W, Hatsu I, et al. An examination of demographic and psychosocial factors, barriers to healthy eating, and diet quality among African American adults. *Nutrients*. 2019;11(3). doi: 10.3390/nu11030519.
- 47. Sanjeevi N, Freeland-Graves JH, Sachdev PK. Association of loss of Supplemental Nutrition Assistance Program benefits with food insecurity and dietary intake of adults and children. *Am J Clin Nutr.* 2021. doi: 10.1093/ajcn/ngab082.
- 48. Shan Z, Rehm CD, Rogers G, et al. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. *Jama*. 2019;322(12):1178-1187. doi: 10.1001/jama.2019.13771
- 49. Singleton CR, Young SK, Kessee N, Springfield SE, Sen BP. Examining disparities in diet quality between SNAP participants and non-participants using Oaxaca-Blinder decomposition analysis. *Prev Med Rep.* 2020;19:101134. doi: 10.1016/j.pmedr.2020.101134. eCollection 2020 Sep.

Agriculture Income and HEI

- 50. Springfield S, Odoms-Young A, Tussing-Humphreys LM, Freels S, Stolley MR. A step toward understanding diet quality in urban african-american breast cancer survivors: a cross-sectional analysis of baseline data from the moving forward study. *Nutr Cancer*. 2019;71(1):61-76. doi: 10.1080/01635581.2018.1557217. Epub 2019 Feb 18.
- 51. Thomas Berube L, Messito MJ, Woolf K, Deierlein A, Gross R. Correlates of prenatal diet quality in low-income hispanic women. *J Acad Nutr Diet.* 2019;119(8):1284-1295. doi: 10.1016/j.jand.2019.02.004. Epub 2019 Apr 5.
- 52. Thomson JL, Tussing-Humphreys LM, Goodman MH, Landry AS. Diet quality in a nationally representative sample of American children by sociodemographic characteristics. *Am J Clin Nutr.* 2019;109(1):127-138. doi: 10.1093/ajcn/nqy284.
- 53. Thomson JL, Landry AS, Tussing-Humphreys LM, Goodman MH. Diet quality of children in the United States by body mass index and sociodemographic characteristics. *Obes Sci Pract*. 2020;6(1):84-98. doi: 10.1002/osp4.388. eCollection 2020 Feb.
- 54. Todd JE. Revisiting the Supplemental Nutrition Assistance Program cycle of food intake: Investigating heterogeneity, diet quality, and a large boost in benefit amounts. *Applied Economic Perspectives and Policy.* 2015;37(3):437-458. doi: https://doi.org/10.1093/aepp/ppu039
- Tovar A, Risica PM, Ramirez A, et al. Exploring the provider-level socio-demographic determinants of diet quality of preschoolaged children attending family childcare homes. *Nutrients*. 2020;12(5). doi: 10.3390/nu12051368.
- Waehrer G, Deb P, Decker SL. Did the 2009 American Recovery and Reinvestment Act affect dietary intake of low-income individuals? *Econ Hum Biol.* 2015;19:170-183. doi: 10.1016/j.ehb.2015.08.006. Epub 2015 Aug 29.
- 57. Wang M, Levi R, Seligman H. New SNAP eligibility in california associated with improved food security and health. *Prev Chronic Dis.* 2021;18:E28. doi: 10.5888/pcd18.200587.
- 58. Weatherspoon DD, Miller SR, Steele ME, et al. What social, program, and behavioral factors influence the healthy eating index for EFNEP and SNAP-Ed adult participants? *Am J Lifestyle Med.* 2017;11(4):344-353. doi: 10.1177/1559827615607194. eCollection 2017 Jul-Aug.
- 59. Weinfield NS, Borger C, Gola AA. Breastfeeding duration in a low-income sample is associated with child diet quality at age three. *J Hum Lact*. 2021;37(1):183-193. doi: 10.1177/0890334420903029. Epub 2020 Feb 24.
- 60. Wilcox S, Sharpe PA, Liese AD, Dunn CG, Hutto B. Socioeconomic factors associated with diet quality and meeting dietary guidelines in disadvantaged neighborhoods in the Southeast United States. *Ethn Health.* 2020;25(8):1115-1131. doi: 10.1080/13557858.2018.1493434. Epub 2018 Jul 2.
- 61. Wilson MD, Ramírez AS, Arsenault JE, Miller LMS. Nutrition label use and its association with dietary quality among latinos: the roles of poverty and acculturation. *J Nutr Educ Behav.* 2018;50(9):876-887. doi: 10.1016/j.jneb.2018.05.019.

Chapter 3 - What is the relationship between overall diet cost and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?

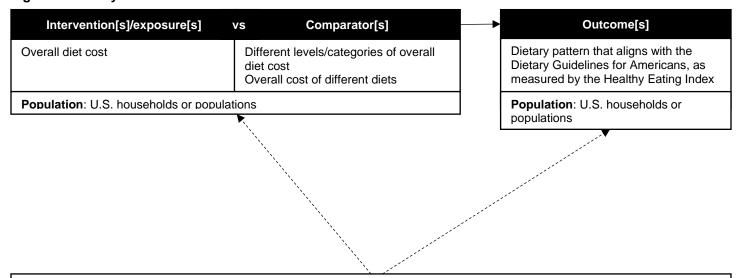
Emily Callahan, MS,^a Molly Higgins, MLIS,^b Marlana Bates, MPH, RD,^c Laural Kelly English, PhD,^c Julie Nevins, PhD,^c Julia H Kim, PhD, MPH, RD,^c Sara Scinto-Madonich, MS^c

Specific methods to conduct this rapid review

Develop a protocol

The research question, "What is the relationship between overall diet cost and following a dietary pattern that aligns with the Dietary Guidelines for Americans, as measured by the Healthy Eating Index (HEI)?", was answered using a rapid review.

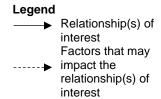
The analytic framework for the rapid review examining the relationship between diet cost and HEI is presented in **Figure 3-a**. This analytic framework visually represents the overall scope of the rapid review question, and depicts the contributing elements that were examined and evaluated. The intervention or exposure of interest is overall diet cost in U.S. households or populations. The comparators are different levels or categories of overall diet cost, or the overall cost of a different diet(s). The outcomes are dietary patterns that align with the Dietary Guidelines for Americans, as measured by the HEI in U.S. households or populations. The key confounders are urban versus rural, cultural/racial diversity or disparities, sex, age, energy, and SES. The other factors to be considered are cultural food choices, neighborhood characteristics (e.g., access to food/distance to stores/access to car/type of store), smoking, weight status, chronic disease status, convenience level, processing level, and food security status. The confounders and other factors to be considered may impact the relationships of interest.


^a Project Lead, NESR team, NGAD, CNPP, FNS, USDA

^b Librarian, NESR team; Panum Group, under contract with the FNS, USDA

^c Analyst, NESR team; Panum Group, under contract with the FNS, USDA

Figure 3-a. Analytic framework



Key confounders: Urban vs. Rural; Cultural/racial diversity or disparities; Sex; Age; Energy; SES

Other factors to be considered: Cultural food choices; Neighborhood characteristics (e.g., access to food/distance to stores/access to car/type of store); Smoking; Weight status; Chronic disease status; Convenience level; Processing level; Food security status

Key definitions

<u>Dietary pattern:</u> The quantities, proportions, variety, or combination of different foods, drinks, and nutrients (when available) in diets, and the frequency with which they are habitually consumed.

Search for and select studies

The following outlines any departures from the search and select studies project methods for this specific rapid review:

- Title and abstract screening was completed together in 1 level and full text screening was at a separate level.
- For title and abstract screening, 80% of all records were single-screened and 20% of all records were dual-screened, independently. For the full-text screening level all records were dual-screened, independently by 2 analysts.

NESR analysts worked jointly with NEAT staff to establish the final inclusion and exclusion criteria and literature search strategy, which are detailed in **Table 3-a** and **Appendix 3-a**, respectively.

Table 3-a. Inclusion and exclusion criteria

Category	Inclusion Criteria	Exclusion Criteria
Study design	Any study design that is not a narrative review, systematic review, or meta-analysis	Narrative reviewsSystematic reviewsMeta-analyses
Intervention/ exposure	 Overall diet cost or change in overall diet cost Overall food expenditures or change in overall food expenditures All assessment methods of diet cost or expenditures will be included Measures that include labor or time within an overall diet cost or expenditure 	 Individual food, beverage, food group, or multiple food group costs Costs of labor or time alone, that are not part of an overall diet cost measure
Comparator	 Different levels/categories of overall diet cost Overall cost of a different diet 	• N/A
Outcomes	 Dietary patterns that specifically align with the Dietary Guidelines for Americans, as measured by the total Healthy Eating Index (HEI) All versions or variations of HEI (e.g. HEI-2005, HEI-2010, HEI-2015) Change in total HEI over time 	 Studies that examine any other dietary pattern or diet quality indicator that include only individual or select foods and beverages and do not reflect the totality of the diet nor the Dietary Guidelines for Americans. Studies that only examine component scores of the HEI
Publication date	 Jan 2008 - May 2021 and data inclusive of 2008 (e.g., 2000-2012; 2008-2009) 	 Articles published prior to Jan 2008 Data prior to 2008 (e.g., 2000-2007; 1999-2005)
Publication status	 Articles published in peer-reviewed journals Grey literature: reports that have not been peer reviewed but are available from government and nongovernmental organizations 	 Articles that have not been peer-reviewed and are not published in peer-reviewed journals, other than reports from government and nongovernmental organizations
Language	Articles published in English	Articles published in languages other than English
Country	Studies conducted the U.S.	Studies conducted in countries outside the U.S.
Study participants	Human participants/populationsMalesFemales	Non-human participants (e.g., animal studies, invitro models)

Extract data and assess the risk of bias

NESR analysts extracted and summarized data from each included article to objectively describe the body of evidence available to answer a rapid review question. The following outlines any departures from the extract data and assess risk of bias project methods for this specific rapid review:

• Data extraction and risk of bias assessment was completed on all included articles and verified by a 2nd analyst.

Synthesize the evidence

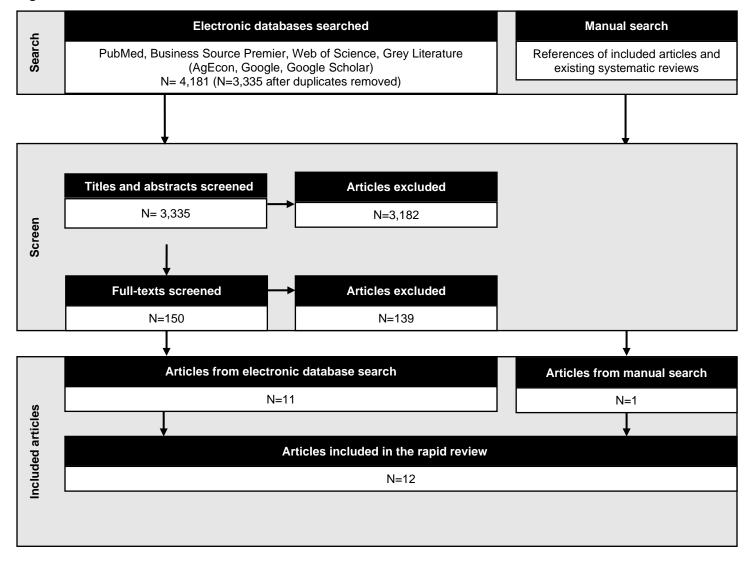
Evidence synthesis was completed by describing the evidence and evaluating the included studies individually and collectively as previously described in the project methods.

Summary statements

NESR analysts formed summary statements, as previously described in the project methods, outlining the themes observed during the data synthesis of studies examining diet cost and HEI.

Recommend future research

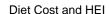
Recommendations for future research evaluating the relationship between diet cost and HEI were determined based on the gaps and limitations observed during data extraction and synthesis, as previously described in the project methods. Future work addressing these gaps and limitations may contribute to the body of evidence available to answer this research question.


Results

Literature search and screening results

The literature search yielded 3,335 search results after the removal of duplicates (see **Figure 3-b**). Screening resulted in the exclusion of 3,182 titles and abstracts, and 140 full-texts articles. Reasons for full-text exclusion are in **Appendix 3-b**. One additional article was identified for inclusion from the manual search. The body of evidence included 12 articles.

Figure 3-b. Literature search and screen flowchart



Description of evidence

This rapid review included 12 articles that examined the relationship between diet cost and HEI.¹⁻¹² One article was an RCT⁹, 2 were prospective cohort studies^{3,12}, and the remaining 9 were cross-sectional studies.^{1,2,4-8,10,11} The sample sizes of the studies ranged from 134⁹ to 11,181¹⁰ participants or dyads. One sample size was unreported but used data from NHANES.¹

Population characteristics

Seven independent study populations were examined in the 12 articles. Two articles used nationally representative data (NHANES),^{1,10} 3 articles were from the population included in the Seattle Obesity Study III (SOS III) study,^{6,7,11} 2 articles were from populations from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study,^{2,3} and 2 articles came from the same population from Massachusetts.^{8,9} The remaining 3 articles were individual populations from Texas and Pennsylvania.^{4,5,12} Ten articles assessed

only adults,^{1-7,10-12} 1 article assessed only children,⁸ and 1 article assessed child-parent dyads.⁹ While similar data were analyzed in the articles from the same study populations, each article contributed unique subanalyses or analytic/assessment methods.

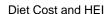
Exposure and comparator characteristics: diet cost and food expenditures

There were 2 categories of the exposure examined in the included articles, diet cost and food expenditures.

Eight articles assessed diet cost⁶⁻¹¹ or monetary value of the diet^{2,3} that was based on the cost of the diet that was consumed by the participant. In this subset of studies, diet cost was estimated from consumption data, which were linked to external food prices, and used to calculate a diet cost. While this method most directly answers the question, it has the limitation that costs were estimated using databases that may not be reflective of what the participants paid for the food, the geographic locations that they lived or from the same period of time that the diet data was collected. The food price databases that were used varied across the studies, and included the CNPP Food Prices Database,^{2,10} UNC's Packaged Food Purchase and Price Database,³ local retail prices from a large supermarket (i.e., Safeway),^{6,7,11} or national online supermarket prices.^{8,9} Diet costs were estimated either per day^{2,3,8,9} or per month.^{6,7,10,11}

Seven articles assessed food expenditures^{4-7,11,12} or grocery spending¹ that were based on the amount spent on purchases of food at home and/or food away from home. Two articles reported only expenditures from food at home,^{7,11} while the other 5 articles reported total food expenditures which included both food at home and food away from home.^{4-6,12} Expenditures were estimated from purchase data, either grocery receipts¹² or a self-reported estimate of how much money they spent on food per capita^{1,5-7,11,12} or per household.⁴ One article did not report the method used for collecting expenditure data.¹ Expenditures were generally adjusted to be reflective of the amount of time and number of people the expenditures represent. Two articles reported expenditures per week,^{4,5} while 4 articles reported expenditures per month.^{6,7,11,12} However, what is purchased by the study participant may not reflect what was actually consumed, and therefore, this approach is an indirect measure of the relationship being examined.

Outcome assessment: HEI score


All studies examined dietary patterns aligned with the DGA as measured by the HEI. Four articles assessed HEI-2015, 4,6,7,11 4 articles assessed HEI-2010, 2,3,10,12 3 articles assessed HEI-2005, 5,8,9 and 1 article did not report which version of HEI was used in the analysis. Scores on the HEI were determined using a variety of validated dietary assessment methods, including food frequency questionnaires, 24-hour dietary recalls, or 3 day diet records.

Synthesis

Diet cost

Eight articles assessed the cost of the diet and HEI by measuring diet cost as the exposure and results from these studies are provided in **Table 3-b**.^{2,3,6-11} Six^{2,3,6,7,10,11} of these 8 articles reported that higher cost diets had higher HEI scores or that lower cost diets had lower HEI scores. Three of the 6 articles with significant findings were from the SOS III cohort and included unique data that answered this question but were from the same population of participants.^{6,7,11}

The 2 other articles (using data from 1 RCT) showed non-significant associations between diet cost and HEI scores.^{8,9} One article showed a non-significant time-varying association between higher diet costs and lower HEI scores over the 18 month intervention in both children and their parents. The other article, which was a cross sectional analysis of baseline data, showed a non-significant association between higher diet costs and

higher HEI scores in children. However, this trial was in a population of children with type 1 diabetes and their parents that were generally high income, and may not be generalizable to the U.S. population.

Food expenditures

Seven articles assessed the relationship between the cost of the diet and HEI by measuring food expenditures as the exposure and results from these studies are provided in **Table 3-c.**^{1,4-7,11,12} Four^{4,6,7,12} out of 7 articles reported that higher food expenditures were significantly associated with higher HEI scores, or that lower food expenditures were significantly associated with lower HEI scores. Two of the 4 articles with significant findings were from the SOS III cohort and contributed unique analyses that answered this question but were from the same population of participants.^{6,7} The 3 other articles found relationships in the same direction but did not reach statistical significance.^{1,5,11}

Total food expenditures were generally calculated by summing together expenditures from food at home and food away from home. One of the studies looked at the relationship between all three of these variables and HEI, and saw a positive association with both total and food at home expenditures, but an inverse association with food away from home and HEI.⁴ This means that the total expenditure relationship is being driven by food at home related expenditures. Although this is only 1 study, it is an important consideration when looking at this data.

Assessment of evidence

As outlined and described below, the body of evidence examining the relationship between diet cost or expenditures and HEI was assessed for the following elements.

Risk of bias

Risk of bias assessments for each included article are provided in **Table 3-d** and **Table 3-e**. The majority of studies were cross-sectional or cohort studies and did not account for at least 1 key confounder. Many studies had serious concerns with deviations from intended exposures because of using price data that was not specific to what participants paid. Most studies had concerns with missing data and/or the selection of reported results due to the lack of a priori analysis plans or reporting very similar results from the same cohort of participants. One article with non-significant findings had many serious risks of bias for confounding, classification and deviations from intended exposures and outcome measurement due to the fact that they did not adequately describe how the exposure or outcomes were collected or handled and they did not adjust for any confounding factors in the analysis included in this rapid review¹.

Consistency

The direction of the findings were very consistent and the magnitude was consistently small. Most studies reported at least 1 significant association between higher diet cost or expenditures and higher HEI scores. All articles, but one, showed either a significant or non-significant association in a consistent direction, with higher diet cost or expenditures and higher HEI.

Directness

There were serious concerns with the directness of exposure measurements. Food expenditure represented purchasing costs that are generally self-reported and are not limited to individual diets. Diet cost is more direct and measures cost of the foods that were consumed but are linked to price databases or sources that were not where the participants actually shopped with a lack of adjustment for geographic location.

Precision

There were some concerns with precision across the body of evidence. The effects were relatively consistent with large sample sizes; however, samples may not be large enough to detect small differences in HEI scores.

Generalizability

All studies in the body of evidence were conducted in the U.S. and the majority of studies were generalizable to the U.S. population. However, those studies with convenience samples in children with type 1 diabetes and their families, have very limited generalizability. Additionally, multiple studies were completed in the same population of participants (SOS III; HANDLS) and while each contributed unique data, they should not be interpreted as completely independent.

Summary statements and research recommendations

Summary statements

The findings of the rapid review are presented in the following summary statements.

Diet cost

Evidence suggests a relationship between higher diet costs of foods consumed by participants and higher HEI scores. There were critical limitations including that the prices used were generally not the prices that the participants actually paid, from the same location, or at the same time point as the purchase.

Food expenditures

Evidence suggests a relationship between higher total expenditures of food purchases and higher HEI scores. There were critical limitations including that total expenditures were generally self-reported and may not be specific to the foods consumed by the participants.


Total expenditures from food includes both food at home and food away from home. The relationship between total expenditures and HEI scores may be driven by expenditures from food at home, and attenuated by expenditures from food away from home.

Research recommendations

- 1. Conduct well-designed longitudinal studies that examine the relationship between diet cost or food expenditures and diet quality over time.
- 2. Standardize and update national food price databases to increase comparability across studies.
- 3. Assess diet cost by using prices specific to individuals or standardized national food price databases that are adjusted for participant location and time period of diet data collection.
- 4. Assess food expenditures that are specific to food at home and food away from home separately, since expenditures from food at home may have a positive relationship with diet quality as where expenditures from food away from home may have an inverse relationship with diet quality.
- 5. Account for potential confounders to better determine the relationship between diet cost and diet quality.

Sensitivity Analysis

Articles using data collected prior to 2008 (e.g., 2000-2007; 1999-2005), regardless of publication date, were excluded for this rapid review for the reasons stated in the project methods. However, national price databases are commonly used to determine diet cost, and NESR analysts recognized that articles may not have been included as a result of using the most up to date national data that was available at the time of the authors

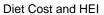
analyses. A sensitivity analyses was completed that included articles published in 2008 or later, but that used data from prior to 2008.

There were 5 articles included in the sensitivity analyses, of which 4 found an association between higher diet costs or expenditures and higher HEI scores and were in general agreement with the results of the rapid review. All 5 articles used NHANES data and either the CNPP Food Price Database or Consumer Expenditure Survey Data.

^a Carlson, A, Dong, D, Lino, M. Are the total daily cost of food and diet quality related: a random effects panel data analysis. 2010.

^b Carlson, A, Dong, D.,Lino, M.. Association between Total Diet Cost and Diet Quality Is Limited. Journal of Agricultural and Resource Economics. 2014. 39:47-68

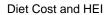
[°] Carlson, A, Lino, M, Fungwe, TV, Guenther, PM.. Eating a Healthy Diet: Is Cost a Major Factor? 2009.


^d Malbi, J, Castner, L, Ohls, J, Fox, MK, Crepinsek, MK, Condon, E. Food Expenditures and Diet Quality Among Low-Income Households and Individuals," Final Report submitted to USDA, FNS for Contract Number AG-3198-D-07-0114, 2010, http://www.fns.usda.gov/sites/default/files/FoodExpendDietQuality.pdf.

^e Rehm, C. D., Monsivais, P., Drewnowski, A.. The quality and monetary value of diets consumed by adults in the United States. Am J Clin Nutr. 2011. 94:1333-9

Table 3-b. Evidence examining the relationship between diet cost and HEI score^a

Author, Year	Population	Exposure	Outcome	Results
Beydoun, 2015 ² Cross-sectional	Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS)	Monetary Value of the Diet (\$/d)	HEI-2010	MVD per \$1/d: β=-\$1.65 [0.12], p<0.0001 MVD per \$3/d: β=-\$4.98 [0.35], (IQR: \$3.70/d (Q1) to \$6.62/d (Q4)), p<0.0001
orese escalaria.	Analytic N: 2,111	Data source: CNPP Food Prices Database, 2003-2004 (updated for inflation)		
Beydoun, 2018 ³	Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS)	Monetary Value of the Diet (\$/d)	HEI-2010	T2 v. T1: β=0.71 [0.19] , T3 v. T1: β=1.33 [0.22], p<0.001
PCS	Analytic N: 1,466	Data source: UNC's Packaged Food Purchase and Price Database, 2004-2013		
Gupta, 2020 ⁶	Seattle Obesity Study III (SOS III)	Diet Cost (\$/mo)	HEI-2015	Mean HEI (SD): Lowest cost T1 (n=252) 62.57 (9.91) v. middle cost T2 (n=252) 67.18 (9.70) v. highest cost T3 (n=251) 71.55 (7.87), p<0.0001
Cross-sectional	Analytic N: 755	Data source: local retail prices from a large supermarket (i.e. Safeway)		
Gupta, 2021 ⁷	Seattle Obesity Study III (SOS III)	Diet Cost (\$/mo)	HEI-2015	Mean HEI (SD): ≤\$252: 62.6 (10) (ref) v. >\$253–≤\$299: 67.1 (9.77), p<0.0001 v. ≥\$300: 71.5 (7.81), p<0.0001
Cross-sectional	Analytic N: 747	Data source: local retail prices from a large supermarket (i.e. Safeway)		


Author, Year	Population	Exposure	Outcome	Results			
Rose, 2020 ¹¹ Seattle Obesity Study III (SOS III)		Diet Cost (\$/mo)	HEI-2015	Linear models: Mean HEI per \$100: 5.33, 95% CI: 4.15, 6.50, p<0.0001			
Cross-sectional	Analytic N: 768	Data source: local retail prices from a large supermarket (i.e. Safeway)		Curvilinear models: 17.82, 95% CI: 9.76, 25.88, p<0.0001 Quadratic model: -2.06, 95% CI: -3.35, -0.78, p<0.0002			
Rehm, 2015 ¹⁰	NHANES	Diet Cost (\$/mo)	HEI-2010	Q1, n = 2545: 44.2, 95% CI: 42.7, 45.7 (ref)			
	Analytic N:11,181			Q2, n = 2348: 50.1, 95% CI: 48.7, 51.5, p<0.001 Q3, n = 2231: 55.8, 95% CI: 54.1, 57.6, p<0.001			
Cross-sectional		Data source: CNPP Food Prices Database, 2003-2004 (updated for inflation)		Q4, n = 2073: 60.2, 95% CI: 58.2, 62.1, p<0.001 Q5, n = 1984: 66.6, 95% CI: 65.3, 67.9, p<0.001			
Nansel, 2015 ⁸	Youth with Type 1 Diabetes	Diet Cost (\$/d)	HEI-2005	Mean HEI (SD): T1 (lowest) \$6.67 [0.37] v. T2 \$6.80 [0.36] v. T3 \$7.35 [0.37], p-trend=0.20, NS			
Cross-sectional (baseline data from RCT)	Analytic N: 252	Data source: National online supermarket prices					
Nansel, 2016 ⁹	Youth with Type 1	Diet Cost (\$/d)	HEI-2005	Youth: β=-0.0005, 95% CI: -0.02, 0.02, p=0.96, NS;			
,	Diabetes and their parents			Adults: β=-0.06, 95% CI: -0.13, 0.01, p=0.11, NS			
RCT	Analytic N: 136	Data source: National online supermarket prices					

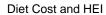
^a Abbreviations: CNPP, Center for Nutrition Policy and Promotion; d, day; HEI, healthy eating index; HANDLS, Healthy Aging in Neighborhoods of Diversity across the Life Span; HH, household; mo, month; NS, not significant; PCS, prospective cohort study; RCT, randomized controlled trial; SOS III, Seattle Obesity Study III

Table 3-c. Evidence examining the relationship between food expenditures and HEI scores^a

	Population	Exposure	Outcome	Results
Carpio, 2020 ⁴	Staff and Faculty at Public University in West Texas	Weekly food expenditures (\$/wk; HH)	HEI-2015	Total food expenditures: β=0.058 [0.03], p<0.10; Food at home expenditures (natural log): β=0.085 [0.029], p<0.01;
Cross-sectional	Analytic N: 142	Diet source: self report		Food away-from-home expenditures (natural log): Coefficient -0.002 [0.010], NS;
Sanjeevi, 2018 ¹²	Low-income women in Texas	Food expenditures relative to TFP cost (\$/mo; per capita)	HEI-2010	β=5.29, SE: 2.60, p=0.04
PCS	Analytic N: 144	(ф/тю, рег сарпа)		
		Diet source: monthly grocery receipts		
Gupta, 2020 ⁶	Seattle Obesity Study	Food expenditures (\$/mo; per capita)	HEI-2015	Mean HEI (SD): Lowest expenditure T1 65.23 (9.53) v. middle expenditure T2 (n=271) 66.80 (10.04) v. highest expenditure T3 (n=232) 69.45 (9.68), p<0.0001
Cross-sectional	Analytic N: 755	Diet source: self report		
Gupta, 2021 ⁷	Seattle Obesity Study	Food expenditures at home (\$/mo; per	HEI-2015	Mean HEI (SD): ≤\$100: 65.2 (9.96) (ref) v. >\$100–≤\$175: 66.4 (9.88), p=0.177 v. ≥\$175: 69.9 (9.27), p=0.0001;
Cross-sectional	Analytic N: 747	capita)		
		Diet source: self-report		
Rose, 2020 ¹¹	Seattle Obesity Study III Analytic N: 768	Food expenditures at home (\$/mo; per capita)	HEI-2015	Linear model, Mean HEI per \$100: 0.09, 95% CI: -0.49, 0.67, NS Curvilinear model, NR, NS
Cross-sectional	Analytic N. 700	Diet source: self report		

	Population	Exposure	Outcome	Results
Anderson, 2016 ¹	NHANES; SNAP participants	Grocery Spending (per capita)	HEI (unspecified)	β=0.004 (0.004), NS
Cross-sectional	Analytic N: NR			
6 , 666 666 666		Diet source: NR		
Dubowitz, 2015 ⁵	PHRESH: majority African-American population near	Weekly food expenditures (\$/wk; per capita)	HEI-2005	β=0.004; NS
Cross-sectional	Pittsburgh	. ,		
	Analytic N: 1,372	Diet source: self-report		

^a Abbreviations: HEI, healthy eating index; HH, household; mo, month; NHANES, National Health and Nutrition Examination Survey; PCS, prospective cohort study; PHRESH, Pittsburgh Hill/Homewood Research on Neighborhood Change and Health; NR, not reported; NS, not significant; RCT, randomized controlled trial; wk, week


Table 3-d. Risk of bias for the randomized controlled trial examining diet cost or expenditures and HEI^a

Article	Randomization	Deviations from intended interventions (effect of assignment) and (per-protocol)	Missing outcome data	Outcome measurement	Selection of the reported result
Nansel, 2016 ⁹	LOW	SOME CONCERNS	SOME CONCERNS	LOW	SOME CONCERNS

Table 3-e. Risk of bias for observational studies examining diet cost or expenditures and HEI^a

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Anderson, 2016 ¹	SERIOUS	LOW	SERIOUS	SERIOUS	NI	SERIOUS	MODERATE
Beydoun, 2018 ³	LOW	MODERATE	MODERATE	SERIOUS	MODERATE	LOW	MODERATE
Beydoun, 2015 ²	LOW	MODERATE	SERIOUS	SERIOUS	MODERATE	LOW	MODERATE
Carpio, 2020 ⁴	SERIOUS	SERIOUS	MODERATE	SERIOUS	MODERATE	LOW	MODERATE
Dubowitz, 2015 ⁵	MODERATE	MODERATE	LOW	LOW	MODERATE	LOW	MODERATE
Gupta, 2020 ⁶	SERIOUS	MODERATE	LOW	MODERATE	MODERATE	LOW	SERIOUS

^a Possible ratings of low, some concerns, or high determined using the "Cochrane Risk-of-bias 2.0" (RoB 2.0) (August 2016 version)" (Higgins JPT, Sterne JAC, Savović J, Page MJ, Hróbjartsson A, Boutron I, Reeves B, Eldridge S. A revised tool for assessing risk of bias in randomized trials In: Chandler J, McKenzie J, Boutron I, Welch V (editors). Cochrane Methods. Cochrane Database of Systematic Reviews 2016, Issue 10 (Suppl 1). dx.doi.org/10.1002/14651858.CD201601.)

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Gupta, 2021 ⁷	LOW	MODERATE	LOW	MODERATE	MODERATE	LOW	SERIOUS
Nansel, 2015 ⁸	SERIOUS	SERIOUS	LOW	MODERATE	MODERATE	LOW	MODERATE
Rehm, 2015 ¹⁰	MODERATE	LOW	LOW	SERIOUS	LOW	LOW	LOW
Rose, 2020 ¹¹	LOW	MODERATE	LOW	MODERATE	MODERATE	LOW	SERIOUS
Sanjeevi, 2018 ¹²	SERIOUS	MODERATE	MODERATE	LOW	LOW	LOW	LOW

^a Possible ratings of low, moderate, serious, critical, or no information determined using the "Risk of Bias for Nutrition Observational Studies" tool (RoB-NObs) (Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.)

References of the articles included in the diet cost and HEI rapid review

- 1. Anderson PM, Butcher KF. The Relationships Among SNAP Benefits, Grocery Spending, Diet Quality, and the Adequacy of Low-Income Families' Resources. *Center on Budget and Policy Priorities*. 2016.
- Beydoun MA, Fanelli-Kuczmarski MT, Allen A, et al. Monetary Value of Diet Is Associated with Dietary Quality and Nutrient Adequacy among Urban Adults, Differentially by Sex, Race and Poverty Status. *PLoS One*. 2015;10(11):e0140905 doi:10.1371/journal.pone.0140905. eCollection 2015.
- 3. Beydoun MA, Fanelli-Kuczmarski MT, Poti J, et al. Longitudinal change in the diet's monetary value is associated with its change in quality and micronutrient adequacy among urban adults. *PLoS One.* 2018;13(10):e0204141 doi:10.1371/journal.pone.0204141. eCollection 2018.
- 4. Carpio CE, Kalenkoski CM, Moyeda-Carabaza AF, Murimi M. The effect of time use and food cost on dietary quality. *Public Health Nutr.* 2020;23(18):3284-3294 doi:10.1017/S1368980020001615. Epub 2020 Jul 13.
- Dubowitz T, Zenk SN, Ghosh-Dastidar B, et al. Healthy food access for urban food desert residents: examination of the food environment, food purchasing practices, diet and BMI. *Public Health Nutr.* 2015;18(12):2220-2230 doi:10.1017/S1368980014002742. Epub 2014 Dec 5.
- Gupta S, Rose CM, Buszkiewicz J, et al. Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: findings from the Seattle Obesity Study (SOS) III. Br J Nutr. 2020:1-9 doi:10.1017/S0007114520004705.
- 7. Gupta S, Rose CM, Buszkiewicz J, Otten J, Spiker ML, Drewnowski A. Inedible Food Waste Linked to Diet Quality and Food Spending in the Seattle Obesity Study SOS III. *Nutrients*. 2021;13(2) doi:10.3390/nu13020479.
- 8. Nansel T, Haynie D, Lipsky L, Mehta S, Laffel L. Little variation in diet cost across wide ranges of overall dietary quality among youth with type 1 diabetes. *J Acad Nutr Diet*. 2015;115(3):433-439 e431 doi:10.1016/j.jand.2014.07.035. Epub 2014 Sep 27.
- 9. Nansel TR, Lipsky LM, Eisenberg MH, Liu A, Mehta SN, Laffel LM. Can Families Eat Better Without Spending More? Improving Diet Quality Does Not Increase Diet Cost in a Randomized Clinical Trial among Youth with Type 1 Diabetes and Their Parents. *J Acad Nutr Diet*. 2016;116(11):1751-1759 e1751 doi:10.1016/j.jand.2016.07.005. Epub 2016 Aug 31.
- 10. Rehm CD, Monsivais P, Drewnowski A. Relation between diet cost and Healthy Eating Index 2010 scores among adults in the United States 2007-2010. *Prev Med.* 2015;73:70-75 doi:10.1016/j.ypmed.2015.01.019. Epub 2015 Jan 24.
- 11. Rose CM, Gupta S, Buszkiewicz J, et al. Small increments in diet cost can improve compliance with the Dietary Guidelines for Americans. Soc Sci Med. 2020;266:113359 doi:10.1016/j.socscimed.2020.113359. Epub 2020 Sep 11.
- Sanjeevi N, Freeland-Graves JH. Association of Grocery Expenditure Relative to Thrifty Food Plan Cost with Diet Quality of Women Participating in the Supplemental Nutrition Assistance Program. *J Acad Nutr Diet.* 2018;118(12):2315-2323 doi:10.1016/j.jand.2018.07.015. Epub 2018 Sep 28.

Chapter 4 - What is the relationship between income and time spent on food-at-home-related activities?

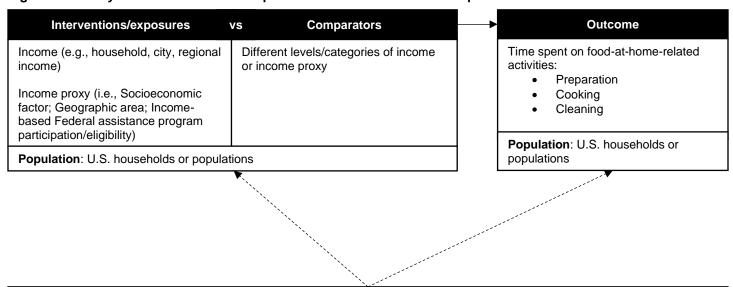
Julia H Kim, PhD, MPH, RD,^a Julie Nevins, PhD,^a Molly Higgins, MLIS,^b Marlana Bates, MPH, RD,^a Laural Kelly English, PhD,^a Sara Scinto-Madonich, MS,^a Emily Callahan, MS^c

Specific methods to conduct this rapid review

Develop a protocol

The research question, "What is the relationship between income and time spent on food-at-home-related activities?" was answered using a rapid review.

The analytic framework for the rapid review examining the relationship between income and time spent on food-at-home-related activities is presented in Figure 4-a. This analytic framework visually represents the overall scope of the rapid review question, and depicts the contributing elements that were examined and evaluated. The intervention or exposure of interest is income (e.g., household, city, regional income) and income proxy (i.e., socioeconomic factor; geographic area; income-based federal assistance program participation/eligibility) in U.S. households or populations. The comparators are different levels/categories of income or income proxy. The outcome is time spent on food-at-home-related activities, including preparation, cooking, and cleaning in U.S. households or populations. The key confounders are food-away-from-home and household characteristics (e.g., household size (e.g., number of children, number of adults), single or dual head of household; marital status; level of employment; workload division). NESR analysts made a posthoc change when assessing the risk of bias for confounding. NESR analysts determined that adjusting for food-away-from-home would be over controlling for the outcome due to the collinearity of time spent on foodat-home-related activities and time spent on food-away-from-home activities. Therefore, articles that did not account for food-away-from-home in their analyses were not rated differently for risk of bias due to confounding. The other factors to be considered are food security; race/ethnicity; sex; seasonal differences; urban/rural; cultural food choices; neighborhood characteristics (e.g., access to food/distance to stores/ access to car/type of store); use of convenience foods; time preferences/value of food-related activities or cooking skills or cooking equipment. The confounders and other factors to be considered may impact the relationships of interest.


^a Analyst, NESR team; Panum Group, under contract with the FNS, USDA

^b Librarian, NESR team; Panum Group, under contract with the FNS, USDA

[°] Project Lead, NESR team, NGAD, CNPP, FNS, USDA

Figure 4-a. Analytic framework for the rapid review on income and time spent on food-at-home-related activities

Key confounders: Household characteristics (e.g., Household size (e.g., number of children; number of adults), single or dual head of household; marital status; level of employment; workload division)

Other factors to be considered: Food security; Race/ethnicity; Sex; Seasonal differences; Urban/rural; Cultural food choices; Neighborhood characteristics (e.g., access to food/distance to stores/access to car/type of store); Use of convenience foods; Time preferences/value of food-related activities or cooking skills or cooking equipment

Key definitions

<u>Low income</u>: before-tax income at or below 130 percent of the U.S. poverty guidelines <u>Higher income</u>: before-tax income above 130 percent of the U.S. poverty guidelines <u>Food-at-home</u>: Food that is prepared at home and includes ready-to-eat and non-ready-to-eat foods that are brought from grocery stores, food pantries, super centers, mass merchandisers, convenience stores, drug stores, farmers markets, and food co-ops (ERS, 2018)

Legend

 Relationship of interest

Factors that may impact the relationship of interest

Search for and select studies

The following outlines any departures from the search and select studies project methods for this specific rapid review:

- Articles were screened at the title, abstract, and the full-text level, separately.
- One person screened 100% of the articles and a 2nd person screened 20% of articles at the title and abstract screening levels. All articles were dual-screened at the full-text level (2nd person verified excluded articles). Included articles were hand-searched.

NESR analysts worked jointly with NEAT staff to establish the final inclusion and exclusion criteria and literature search strategy, which are detailed in **Table 4-a** and **Appendix 4-a**, respectively.

Table 4-a. Inclusion and exclusion criteria for the rapid review on income and time spent on food-athome-related activities

Category	Inclusion Criteria	Exclusion Criteria			
Study design	 Any study design that is not a narrative review, systematic review, or meta-analysis 	Narrative reviewsSystematic reviewsMeta-analyses			
Intervention/ exposure	 Income (e.g., household, city, regional income) Income proxy: Socioeconomic factor (e.g., education) Geographic area Income-based Federal assistance program participation/eligibility 	Income proxies that are not a direct proxy for income determined by the author			
Comparator	 Different levels or categories of income or SES factor proxy for income Higher vs. lower income geographic areas Different participation/eligibility status in incomebased Federal assistance program(s) 	Comparison of geographic areas without a proxy for income			

Category	Inclusion Criteria	Exclusion Criteria
Outcomes	Time spent on food-at-home-related activities:	Studies that only examine time spent on
	 Preparation (e.g., cutting food, setting table, transportation, shopping) 	 transportation, shopping, and/or eating Studies that only examine time spent on snacking
	o Cooking	Time spent on food-away-from-home-related
	 Cleaning, including storing and putting away food/drinks 	activities, including fast-food (FF) or full-service (FS) restaurants
	Studies that examine transportation, shopping,	Definitions (ERS, 2018):
	and/or eating as part of a combined measure that also includes either preparation, cooking, and/or cleaning	 <u>Food-away-from-home:</u> Food prepared outside of home and includes food from FS restaurants and FF restaurants
		 <u>Fast-food restaurants:</u> Eating places where consumers pay before they eat (e.g., bakery, burger restaurant, and sandwich or coffee shop)
		Full-service restaurants: Eating places where consumers eat before they pay
Date of	Published January 2008 – April 2021 and data	Articles published prior to January 2008
publication and data examined	inclusive of 2008 (e.g., 2000-2012; 2008-2009)	• Data prior to 2008 (e.g., 2000-2007; 1999-2005)
Publication	Articles published in peer-review journals	Articles that have not been peer-reviewed and are
status	 Grey literature: reports that have not been peer- reviewed but are available from government and non-governmental organizations 	not published in peer-reviewed journals, other than reports from government and non-governmental organizations
Language	Articles published in English	Articles published in languages other than English
Country	Studies in the U.S.	Studies conducted outside the U.S.
Study participants	Human participants/populations	Non-human participants (e.g., animal studies, invitro models)

Extract data and assess the risk of bias

NESR analysts extracted and summarized data from each included article to objectively describe the body of evidence available to answer a rapid review question. The following outlines any departures from the extract data and assess risk of bias project methods for this specific rapid review:

- One NESR analyst extracted data (author, year, study design, cohort, year that time data were
 collected, data source for time, year that income data were collected, data source for income, analytic
 N, geographic location, location description, population description, intervention/exposure description,
 comparator, outcome type (preparation, cooking, and/or cleaning), outcome description, outcome
 definition, results, results summary, key confounders, other factors to be considered) and a 2nd analyst
 verified the results.
- Risk of bias assessment was completed by 1 NESR analyst and verified by a 2nd analyst.

Synthesize the evidence

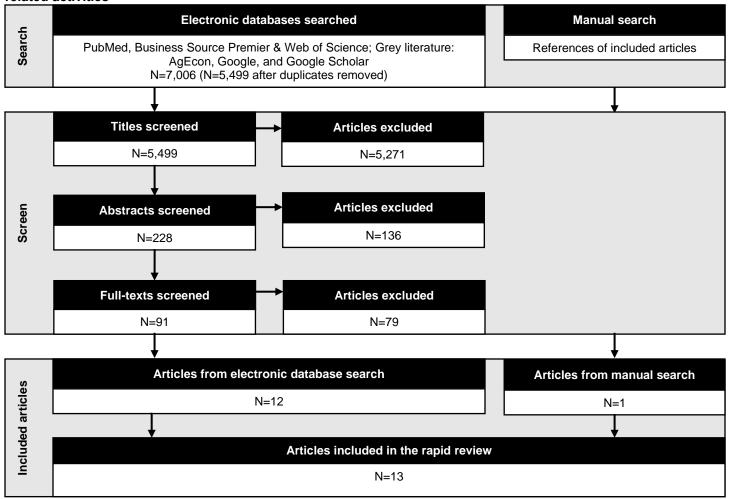
Evidence synthesis was completed by describing the evidence and evaluating the included studies individually and collectively as previously described in the project methods.

Summary statements

NESR analysts formed summary statements, as previously described in the project methods, outlining the themes observed during the data synthesis of studies examining income and time spent on food-at-home-related activities.

Recommend future research

Recommendations for future research evaluating the relationship between income and time spent on food-athome-related activities were determined based on the gaps and limitations observed during data extraction and synthesis, as previously described in the project methods. Future work addressing these gaps and limitations may contribute to the body of evidence available to answer this research question.


Results

Literature search and screening results

The literature search yielded 5,499 search results after the removal of duplicates (see **Figure 4-b**). Dual screening resulted in the exclusion of 5,271 titles, 136 abstracts, and 79 full-texts articles. Reasons for full-text exclusion are in **Appendix 4-b**. One additional article was identified from the manual search. The body of evidence included 13 articles.

Figure 4-b. Literature search and screen flowchart for the rapid review on income and time spent on food-at-home-related activities

Description of the evidence

Thirteen studies (13 articles) were included in the body of evidence that addressed the relationship between income, including income proxy, and time spent on food-at-home-related activities (see **Figure 4-b**). Basic characteristics and results are shown in **Table 4-b**. All studies were cross-sectional. The majority (85%) of studies included populations that were nationally representative.¹⁻¹¹ One study each was conducted in Seattle, Washington,¹² and Minneapolis and St. Paul, Minnesota.¹³ Studies generally included men and women with and without children. Of the five studies that reported race/ethnicity,^{3,6,7,12,13} all but one¹³ had predominantly (>65%) non-Hispanic White populations. The study conducted in Minneapolis and St. Paul, Minnesota had 28% White, 23% African American, 21% Asian, 17% Hispanic, and 11% mixed or other race/ethnicity participants.¹³ Therefore, the study populations for the majority of studies represent the racial/ethnic diversity of the U.S. population. The sample sizes in these 13 studies were large, ranging from 1,078¹ to 118,635.¹⁰

Study characteristics

The majority of studies included participants who completed the survey of interest and were adults 18 years and older, regardless of marital status. Some exceptions were 1 study that only included adults aged 45-75 without children,¹ another study that excluded participants with a child aged 16 to 17,⁸ and another study that only included Hispanic women with a child less than age 13.⁹ The years in which data were collected for analyses varied widely ranging from 2001-2018, and included 2006-2008^{3,4,8} and 2003-2011.^{9,10} Mean age of participants ranged from 32.8⁹ to 64.3 years.¹

Exposure

Eight¹-4,8,10-12 of the 13 included articles examined the effect of income on time spent on food-at-home-related activities. Gough et al.,³ Hamrick et al.,⁴ and Senia et al.,8 assessed time data from the American Time Use Survey (ATUS) from 2006-2008, and therefore, likely include some of the same data in their analyses. However, data eligibility criteria differed between these studies and all were included, given that their samples may not be entirely overlapping. Gough et al.,³ only included women and also included participants who completed 2014-2015 ATUS, Hamrick et al.,⁴ included anyone who completed the 8th Current Population Survey, and Senia et al.,⁴ included anyone who are the only adult members (≥18 years) in the household and with no children age 16-17.

One study examined both income above or below the poverty threshold and SNAP participation and eligibility. Of the studies that examined income, 1 study examined labor income (income from wages, salary, tips, commissions, bonuses, and military pay) and non-labor income (income from government transfers (e.g., social security, disability, welfare), pension benefits, and any income from assets) separately.¹ The federal poverty threshold, 130%, and 185% were used as cut-off points in numerous articles, possibly with overlapping data.³,4,8 For example, a study compared moderate/upper income, defined as ≥185% the poverty threshold to low income (130 to <185% poverty threshold) and to sub-poverty (<130% poverty threshold).³ Two studies had different income cut-offs of <\$50,000 versus \$50,000-99,999 versus ≥\$100,000¹² and <\$25,000 versus \$25,000 versus ≥\$60,000.¹¹¹ Three²,3,10 of these studies collected income data from the American Time Use Survey during various years from 2003-2012 and two from the Eating and Health Module,⁴,8 a supplement of the ATUS. Studies also used income data from the Health and Retirement Survey,¹ the Home Cooking Survey,¹¹ and a study-specific survey.¹²

Six^{4-7,9,13} of the 13 included articles examined the effect of income proxies on time spent on food-at-home-related activities. Although there may be overlapping data between Raschke et al.,⁶ Hamrick et al.,⁴ and Sliwa et al.,⁹ all of these studies had different date ranges of 2003-2009, 2006-2008, and 2003-2011 and therefore, the samples may not be entirely overlapping. Three⁴⁻⁶ of these studies examined SNAP participation and/or eligibility, 1 study compared different levels of employment (i.e., not employed versus part-time versus full-time),¹³ 1 study compared those who worked from home (higher income) to those who worked away from home (lower income),⁷ and 1 study compared US-born Hispanic mothers (higher income) to immigrant or migrant Hispanic mothers (lower income).⁹ The data source and years for the income proxies varied from 2003-2018 and included the American Time Use Survey,^{6,9} Eating and Health Module,⁴ Consumer Expenditure Quarterly Interview Survey,⁵ Leave and Job Flexibilities Module,⁷ and a study-specific survey.¹³

Outcome

The studies differed in their definition of the outcome of time spent on food-at-home-related activities. Twelve^{1-10,12,13} of the 13 included articles had "preparation" as part of their definition for food-at-home-related activities. As part of the outcome definition, 9 studies^{1,4,6-12} included "cleaning," 6 studies^{5,6,8,9,11,12} included "cooking," 5 studies^{2,4,6,7,9} included "presentation," and 3 studies^{5,7,8} included both grocery shopping and transportation. Nine of the articles assessed time spent on food-at-home-related activities using the American Time Use

Survey^{2,3,5-10} and/or the Eating and Health Module,^{4,8} 2 studies used a study-specific survey,^{12,13} and 1 study each used the Consumption and Activities Mail Survey¹ and the Home Cooking Survey.¹¹

Synthesis of the evidence

Income

Among the 4 studies from 5 articles^{2,4,8,11,12} that included men and women, there were mixed findings. Three studies^{2,8,11} found no association between income (log family income or \$25,000-59,999 versus ≥\$60,000) and time spent on preparing and/or cooking, cleaning, food-related travel and grocery shopping. One of these studies did not describe how income was assessed and did not report model adjustments.² Two studies found a significant and positive relationship between income and time spent on cooking and cleaning¹¹ and preparing, cooking, and cleaning.¹² It is important to note that the income comparators (<\$25,000 to \$25,000-59,000 and to ≥\$60,000¹¹ and <\$50,000 to ≥\$50,000¹²) were higher than the exposure and comparators in studies that found an inverse relationship between income and time spent on food-at-home-related activities. The 2 studies that found a significant and inverse relationship (i.e., higher income associated with less time spent on food-at-home-related activities) compared below or above 185% poverty threshold⁴ and below 130% poverty threshold to 130-185% poverty threshold.⁸

Three studies ^{1,3,10} assessed the relationship between income among women only and time spent on food-athome-related activities. There were mixed findings within these 3 studies. All 3 studies^{1,3,10} found a significant, inverse relationship between income in mothers and child-free women and time spent on food preparation and clean-up afterwards. Additionally, those with lower income levels tended to spend more time on food preparation. In 1 study, mothers with sub-poverty income (<130% poverty threshold) spent an average of 8.16 more minutes and mothers with low income (130% to <185% poverty threshold) spent 3.28 more minutes in food preparation per day than mothers with middle/upper income (≥185% poverty threshold).³ This was no longer significant among childfree women.³ Another study¹ found an inverse relationship but this was between non-labor income, defined as income from government transfers (e.g., social security, disability, welfare), pension benefits, and any income from assets. No studies found a direct relationship. Overall, women, especially those with children, spend less time on food-at-home-related activities as income increases.

Two studies^{1,10} assessed the relationship between income among men only and time spent on food-at-home-related activities. One study found an inverse relationship and 1 study found no relationship. Due to a limited number of studies and mixed findings, it is unclear whether there is a relationship between income and time spent on food-at-home-related activities for men.

Income proxies

Five studies from 6 articles^{4-7,9,13} examined income proxies, 2 (from 3 articles) of which examined SNAP participation and/or eligibility,⁴⁻⁶ 1 examined employment level (not employed versus part-time versus full-time),¹³ 1 examined immigrant or migrant Hispanic mothers compared to U.S.-born Hispanic mothers,⁹ and working away from home compared to working at home (higher income).⁶

SNAP participation/eligibility

All 2 studies from 3 articles⁴⁻⁶ that examined SNAP participation and/or eligibility found that those who participated in SNAP spent more time on food preparation, presentation, clean-up, cooking, food-related travel and/or grocery shopping than SNAP non-participants,⁶ and SNAP-eligible non-participants,⁵ and SNAP non-eligible⁴ non-participants. One of two studies that compared SNAP participation to SNAP eligible non-participants did not find a significant difference in time spent on food preparation, including travel time related to food preparation, cooking time, and grocery shopping time.⁴ Specifically, SNAP participants spent 74.7

minutes per day on meal preparation, compared to 72.8 minutes per day among SNAP-eligible non-participants, and 57.6 minutes per day among non-SNAP, non-eligible (income above the 130% poverty threshold) participants (N=37,832, p<0.10). Therefore, individuals who were ineligible for SNAP due to income spent significantly less time on meal preparation than SNAP participants or SNAP-eligible non-participants. Although there is a small body of evidence, there is consistent evidence that SNAP participants spent significantly more time on food-at-home-related activities than SNAP non-participants. It is less clear whether there is a difference between SNAP participants and SNAP-eligible non-participants on time spent on meal preparation and/or cooking, cleaning, presentation, grocery shopping, and food-related travel.

Other income proxies

Two of three studies that examined income proxies found a significant association with participants with lower income based on income proxies spending more time on food preparation only, ¹³ food preparation, cooking, serving, and clean-up. ⁹ U.S.-born Hispanic mothers (higher income, n=1,345) spent significantly less time (70.8 min/day) on food preparation, cooking, presentation, and clean-up than immigrant or migrant Hispanic mothers (lower income, n=2,277) of 107.8 minutes per day. ⁹ There was a dose-response relationship between mother's employment level (unemployed versus part-time versus full-time) and time spent on food preparation, with time spent on food preparation decreasing as level of employment increases. ¹³ For men, those who worked full-time spent less time than those who worked part-time or who were unemployed. However, there was no significant difference between men who were unemployed and men who worked part-time and time spent on food preparation per week. ¹³

One study found a significant, positive relationship, with those who worked away from home (higher income) spending more time on food preparation, presentation, clean-up, grocery shopping, and travel to grocery store (mean: 40.7 min/day, SE: 5.4) than those who worked at home (lower income; Mean: 30.3 min/day, SE: 1.2).

Summary

The results of all 13 articles suggest that at lower income levels (i.e., 185%, 130% or poverty threshold cutoffs), particularly women, spent more time on food-at-home-related activities. When comparing income levels higher than 185% poverty threshold (i.e., <\$50,000 versus ≥\$50,000; <25,000 versus \$25,000-50,000 or ≥\$60,000), there is a significant, positive association between income and time spent on preparation, cooking, and/or cleaning. There is also a consistent pattern of SNAP participants spending significantly more time on food preparation, presentation, clean-up, grocery shopping, and/or food-related travel than SNAP non-participants, regardless of SNAP-eligibility.

Assessment of the evidence

Risk of bias: Half of the studies did not account for household characteristics, which included 1 of the following: household size, single or dual head of household, marital status, level of employment, or workload division (**Table 4-d**).

Consistency: There was some consistency of an inverse relationship between income and time spent on food-at-home-related activities, especially among women and when comparing at 130% and 185% poverty thresholds. Additionally, evidence was consistent with those who participated in SNAP spending significant more time on food-at-home-related activities than those who were SNAP non-participants, including those who were SNAP-eligible.

Directness: The majority of studies (62%) directly measured the income, comparator, outcomes, and population that are outlined in the Analytic Framework (**Figure 4-a**). The remaining studies measured income proxies, rather than income directly.

Precision: All studies had large sample sizes and relatively small measures of variance.

Generalizability: All studies were conducted in the U.S., with the majority (85%) of studies using nationally-represented data. Therefore, studies are representative of the U.S. population.

Summary statements and research recommendations

Summary statements

The findings of the rapid review are presented in the following summary statements.

Income

Evidence indicates that those with lower income spend more time on food-at-home-related activities, particularly among women in the U.S.

Among all women, participants with higher income (≥185% poverty threshold or above the poverty threshold) spend significantly less time on food preparation or food preparation and clean-up.

Among women without children, there was no association between income and time spent on food preparation or food preparation and clean-up.

Among men, there is not enough evidence to determine whether there is an association between income and time spent on food preparation and cleaning due to inconsistent findings.

Income proxies

SNAP participation/eligibility: A small but consistent body of evidence suggests that those who participate in SNAP, compared to those who do not participate in SNAP, spend significantly more time on food-at-home-related activities.

It is less clear whether there is a difference between SNAP participants and SNAP-eligible non-participants on meal preparation due to few studies and inconsistent findings.

Studies had serious risks of bias for confounding due to not adjusting for household characteristics. One study also had a serious risk of bias for deviations from intended exposures due to unbalanced co-exposures (i.e., education, race, marital status) between exposure and comparator groups.

Other income proxies: There is not enough evidence to determine whether there is a relationship between income proxies and time spent on food-at-home-related activities.

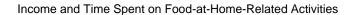
Research recommendations

- Account for household characteristics (e.g., household size, single or dual head of household, marital status, level of employment, workload division) when examining the relationship between income and time spent on food-at-home-related activities.
- Increase use of consistent definition, assessment, and measurement of time spent on food-at-homerelated activities.
- More research is needed to examine the effect of income on food-at-home-related activities, particularly in men.
- Determine eligibility in SNAP among SNAP non-participants when examining the effect of SNAP participation/eligibility on time spent on food-at-home-related activities.

Table 4-b. Cross-sectional evidence examining the relationship between income and time spent on food-at-home-related activities^a

Article	Population, N	Exposure and Comparator	Outcome Definition	Results	Model adjustments
Dunn, 2015 ¹	National Working adults (45-75y) without children N=1,078	Labor income (wages, salary, tips, commissions, bonuses, military pay); continuous Non-labor income (e.g., social security, disability, welfare, pension, income from assets); continuous	Time (min/week) spent on preparing meals and cleaning-up afterwards in previous week Data source: Consumption and Activities Mail Survey (2001-2009 odd years)	Average marginal effects (SE) of time spent on meal preparation (minutes last week), Tobit model Single-headed households (per \$10,000): Male labor income (n=171): -2.346 (4.475), p>0.05 Male non-labor income (n=171): 1.735 (4.364), p>0.05 Female labor income (n=481): -15.050 (4.748), p<0.01 Female non-labor income (n=481): 3.947 (3.013), p>0.05	Age, respondent, and year-fixed effects, labor supply, and household assets
		<u>Data source</u> : Health and Retirement Survey (2001-2009 odd years)		Dual-headed households (per \$10,000): Male labor income (n=210): 0.450 (2.458), p>0.05 Male non-labor income (n=210): -0.684 (1.979), p>0.05 Female labor income (n=216): -12.759 (5.971), p<0.05 Female non-labor income (n=216): -0.441 (2.135), p>0.05	
Forrester, 2018 ²	National Households who completed their 8 th interview in the Current Population Survey Mean age ranges from 35.24 (unmarried male) to 45.35 (two earner married male) N=37,713	Income (not described) <u>Data source</u> : American Time Use Survey (ATUS; 2003-2012)	Food preparation and presentation <u>Data source</u> : ATUS (2003-2012)	Mean time spent on food preparation and presentation does not show much variation within subcategories of income; Statistical test NR	NR

Article	Population, N	Exposure and Comparator	Outcome Definition	Results	Model adjustments
Gough, 2019 ³	National Women aged 18-55; 65% non-Hispanic White, 13% non- Hispanic Black, 15% Hispanic; Married 55%; Employment status: employed full time 54%, employed part time 19%, out of the labor force 21%, unemployed 6% N=17,914	Poverty Threshold (categorical): • ≥ 185% poverty threshold • 130 to <185% poverty threshold • <130% poverty threshold Data source: ATUS (2006-2008, 2014-2015)	Time spent in food preparation (yes/no and min/day among those who prepared food) Data source: ATUS (2006-2008, 2014-2015)	65% of women spent any time preparing food (mean (SE): 54.38 (43.35) min/day, range: 1-210 min/day) Mothers' Likelihood of preparing food, n=8517 OR (95% CI), logistic regression Middle/Upper income: Ref Low income (130-185% poverty threshold): 1.38 (1.15, 1.65), p<0.01 Sub-poverty income (<130% poverty threshold): 1.64 (1.39, 1.94), p<0.001 Childfree Women's Likelihood of preparing food, n=3198 OR (95% CI), logistic regression Middle/Upper income: Ref Low income: 1.16 (0.89, 1.51), p>0.10 Sub-poverty income: 1.07 (0.86, 1.35), p>0.10 Mothers' average min/day in food preparation, n=8517 Coefficient (SE), OLS regression Middle/Upper income: Ref Low income: 3.28 (1.91), p<0.10 Sub-poverty income: 8.16 (1.83), p<0.001 Low income vs. sub-poverty income, p is statistically significant Childfree Women's average min/day in food preparation, n=3198 Coefficient (SE), OLS regression (adjusted for age, marital status, education, race/ethnicity, citizenship, employment, urban residence, weekend day, and year) Middle/Upper income: Ref Low income: 2.94 (3.21), p>0.10 Sub-poverty income: 4.91 (3.40), p>0.10	Age, marital status, education, race/ethnicity, citizenship, employment, urban residence, weekend day, and year (all models)



Article	Population, N	Exposure and Comparator	Outcome Definition	Results	Model adjustments
Hamrick, 2011 ⁴	National Participants who completed the ATUS data and Eating and Health Module for 2006-2008 N=37,832	Income (categorical): • <185% poverty threshold • >185% poverty threshold • Income missing Data source: Eating and Health Module (2006-2008)	Meal preparation defined as food and drink preparation, food presentation, kitchen and food cleanup Data source: ATUS/Eating and Health Module (2006-2008)	Mean meal prep time (minutes), total population, p<0.10 Income <185% poverty threshold: 40.3 Income >185% poverty threshold: 29.5 Income missing: 40.2 Mean meal prep time (minutes), participants, p<0.10 Income <185% poverty threshold: 70.8 Income >185% poverty threshold: 56.4 Income missing: 75.3	None
Monsivais, 2014 ¹² Seattle Obesity Study	Seattle, WA Participants who completed survey; mean age 54y, 67.4% women, 81% White, 7.5% African American, 6.7% Asian, 2.7% Hispanic, 2% other N=1,319	Household income (categorical): • <\$50,000/year • \$50,000-\$99,999/year • ≥\$100,000/year Data source: Study-specific survey (2008-2009)	Average hours spent on preparing, cooking, and cleaning up from meals each time. Responses stratified into three groups: <1 hr/day (n=212, 16%) 1-2 hrs/day (n=566, 43%) >2 hrs/day (n=541, 41%) Data source: Studyspecific survey (2008-2009)	Household income >\$50,000/year (%), Pearson chi-square Hours/day spent preparing, cooking, and cleaning up from meals, p=0.005 <1 hr/day (n=212): 46.7% 1-2 hrs/day (n=566): 58.3% >2 hrs/day (n=541): 57.1%	None
Senia, 2017 ⁸	National Participants who completed ATUS/Eating and Health module, are the only adult member (≥18y) in a household with no children 16-17y N=11,070	Income (continuous) Income (categorical): • 130-185% poverty • <130% poverty Data source: ATUS (2006-2008)	Preparing, cooking, cleaning time, food-related travel, grocery shopping <u>Data source</u> : ATUS (2006-2008)	Marginal effect (SE) of probability of positive food preparation duration Double-hurdle model: <130% poverty: 0.04 (0.01), p<0.01 130-185% poverty: 0.01 (0.01), p≥0.1 Log of real family income: -0.01 (0.00), p<0.01 Marginal effect (SE) of expected duration of food preparation (min/day) Double-hurdle model <130% poverty: 5.30 (1.35), p<0.01 130-185% poverty: 3.72 (1.86), p<0.05 Log of real family income: -1.09 (0.68), p≥0.10	Food-at-home and fast food price indices, age, sex, race/ethnicity, foreign-born, missing income, education, presence of child (0-5 and 6-15 y), metropolitan area, holiday, day of the week, region, year, season

Article	Population, N	Exposure and Comparator	Outcome Definition	Results	Model adjustments
Smith, 2014 ¹⁰	National Free-living residents of households in all 50 states and District of Columbia ≥18y N=118,635	Income (categorical): Below poverty (family income < weighted average poverty threshold for relevant year) Above poverty threshold Data source: ATUS (2003-2011)	Any time spent in food preparation or meal-related cleaning into 3 categorical variables by gender: Female: Not cooking: 32% Cooking 1-59 min/day: 35% Cooking ≥ 60 min/day: 33% Male: Not cooking: 60% Cooking 1-39 min/day: 23% Cooking ≥ 40 min/day: 17% Data source: ATUS (2003-2011)	Men (n=51,139): Percentage of men in each cooking category from 2003-2007 to 2008-2011 (post-recession), Multinomial logistic regression Below poverty: 0 minutes/day: 2003-2007: 62%, 2008-2011: 56%, Change: -6% 1-39 minutes/day: 2003-2007: 22%, 2008-2011: 24%, Change: 2% >=40 min/day: 2003-2007: 16%, 2008-2011: 20%, Change: 4% Above poverty: 0 minutes/day: 2003-2007: 61%, 2008-2011: 59%, Change: -2% 1-39 minutes/day: 2003-2007: 22%, 2008-2011: 23%, Change: 1% >=40 min/day: 2003-2007: 16%, 2008-2011: 18%, Change: 2% Change in percentage of men cooking below (6%) vs. above (2%) poverty: p<0.01 Women (n=67,496): Household income below federal poverty threshold was associated with a strong and consistent increase in likelihood of women cooking for longer durations.	Holidays, age, education, race/ethnicity, household type, individual employment status, and state-level unemployment

Article	Population, N	Exposure and Comparator	Outcome Definition	Results	Model adjustments
Wolfson, 2019 ¹¹	National Participants of the GfK KnowledgePanel (55,000 US adults recruited through equal probability, with sampling frame covering 97% of US households)	Income (categorical): • Low income: < \$25,000 • Middle income: \$25,000–\$59,000 • Highest income: ≥\$60,000 Data source: Home Cooking Survey	Cooking and cleaning time defined as minutes that the participant, or someone in their household, typically spends cooking dinner and cleaning up after dinner on weekdays and on weekends. <u>Data source</u> : Home Cooking Survey	Mean (SEM) time (min/day) spent on dinner cooking and cleaning, Multivariate negative binomial regression Weekday <\$25,000: 44.87 (3.11) \$25,000-59,000: 58.63 (2.27), vs. Low income, p<0.001 ≥\$60,000: 53.11 (1.83), vs. Low income, p=0.03	Income, gender, age, race/ethnicity, education, SNAP/WIC status, employment status, primary grocery shopper status
	N=1,112			<u>Weekend</u> <\$25,000: 44.55 (3.16) \$25,000-59,000: 56.72 (2.39), vs. Low income, p=0.004 ≥\$60,000: 53.53 (1.85), vs. Low income, p=0.02	

Bold indicates statistically significant findings

^a Abbreviations: ATUS: American Time Use Survey; CI: confidence interval; min: minutes; NR: Not Reported; OLS: ordinary least-squares; OR: odds ratio; SE: standard error; SEM: standard error of mean; SNAP: Supplemental Nutrition Assistance Program; WIC: Special Supplemental Nutrition Program for Women, Infants and Children

Table 4-c. Cross-sectional evidence examining the relationship between income proxy and time spent on food-at-home-related activities ^a

Article	Population, N	Exposure and Comparator(s)	Outcome Definition	Results	Model adjustments
Bauer, 2012 ¹³ Project F-EAT	Minneapolis and St. Paul, MN Parents of adolescents who participated in the EAT 2010 study; age mean ranged from 40.6 to 45.4y; 71% in married/committed relationship; White n=961 (28%), African American/Black n=817 (23%), Hispanic n=592 (17%), Asian n=728 (21%), Mixed/other n=395 (11%)	SES proxy: Employment Not employed (lowest income) Part time (middle income) Full time (highest income) Data source: Study-specific survey (2009-2010)	Food preparation time (hours/week) <u>Data source</u> : Study-specific survey (2009-2010)	Adjusted means (SE) Time spent on food preparation (hours/week), Linear regression Fathers, p<0.001* Not employed (n=298): 7.4 (0.39) a Part time (n=133): 6.8 (0.56) a Full time (n=752): 4.7 (0.23) b (p<0.05) Mothers, p<0.001 Not employed (lowest income, n=760): 11.5 (0.30) a (p<0.05) Part time (middle income, n=368): 10.1 (0.41) b (p<0.05) Full time (highest income, n=945): 8.8 (0.26) c (p<0.05) *Different letters indicate statistically significant differences	Relationship status, race/ethnicity, education, age, language spoken at home, and number of children in home
Hamrick, 2011 ⁴	N=3,256 National Participants who completed the ATUS data and the Eating and Health Module for 2006-2008 N=37,832	SES proxy: Participation and eligibility in SNAP/food stamps: SNAP participation Non-SNAP, incomeeligible Non-SNAP, income>130% poverty threshold Data source: Eating and Health Module (2006-2008)	Meal preparation defined as food and drink preparation, food presentation, kitchen and food cleanup Data source: ATUS (2006-2008)	Mean meal prep time (min/day), total population, p<0.10 SNAP/FSP participation household: 47.9 Non-SNAP but income eligible: 39.9 Non-SNAP, income >130% poverty threshold: 30.4 Mean meal prep time (min/day), participants, p<0.10 SNAP/FSP participation household: 74.7 Non-SNAP but income eligible: 72.8 Non-SNAP, income >130% poverty threshold: 57.6	None

Article	Population, N	Exposure and Comparator(s)	Outcome Definition	Results	Model adjustments
Kim, 2020 ⁵	National Households with annual incomes <130% poverty threshold N=8,408 National Participants aged 18- 65y N=18,740	SES proxy: SNAP participant SNAP eligible non-participants Data source: Consumer Expenditure Quarterly Interview Survey (2013-2014) SES proxy: Hourly market wage by SNAP participation: SNAP participants (n=935): \$10.90/hr	Time (min/day) spent in food preparation, including travel time related to food preparation, cooking time, and grocery shopping time Data source: ATUS (2013-2014) Home food production (min/d), which includes food preparation, presentation, and clean up	Time (min/day) spent in food preparation. Regression difference-in-differences model Predicted mean (robust SE) Any SNAP: 8.065 (2.695), p<0.01 After: -0.104 (4.768), p>0.05 SNAP*After benefit decrease: -13.892 (4.127), p<0.01 R^2 = 0.159 Time (min/day) spent cooking, Regression difference-in-differences model Predicted mean (robust SE) Any SNAP: 5.824 (2.156), p<0.01 R^2 = 0.162 Additionally adjusted for after SNAP benefit decrease Mean time (min/day) in home food production, Welch's t-test, p<0.05 SNAP participants (lower income, n=935): 66.95 SNAP non-participants (higher income,	Education, age, age-squared, sex, race, labor force participation, family size, metropolitan, holiday indicator, and fixed effects for day, month, and state
	14-10,7-40	SNAP non-participants (n=17,805): \$21.01/hr Data source: ATUS, Current Population Survey - Food Security Supplement (2003-2009)	<u>Data source</u> : ATUS (2003-2009)	n=17,805): 53.52	
Restrepo, 2020 ⁷	National Mean 39y, 54.4% female, 68.5% non- Hispanic White, 12.1% Hispanic, 9.7% non- Hispanic Black N=1,784	 SES proxy: Worked away from home Worked from home Data source: Leave and Job Flexibilities Module (2017-2018) 	Food preparation includes food and drink preparation, food presentation, kitchen and food clean-up, grocery shopping, and travel to grocery store <u>Data source</u> : ATUS (2017-2018)	Coefficient estimate (SE) food preparation in minutes/d, p<0.10 Worked away from home (lower income, n=1637): 30.3 (1.216) Worked from home (higher income, n=147): 40.7 (5.433)	None


Article	Population, N	Exposure and Comparator(s)	Outcome Definition	Results	Model adjustments
Sliwa, 2015 ⁹	National Hispanic mothers with at least 1 child <13y; mean age 32.8y; 66.2% households with child under 6 (p<0.05 between exposure groups with more US-born mothers with children <6 than im/migrant mothers); 24% single mother household (p<0.05 between exposure groups with more US-born mothers having higher % of single mother household) N=3,622	SES proxy: Im/migrant (n=2277): 52.8% <=130% of poverty guideline; 19.3% >130-185% of poverty guideline; 27.9% >185% of poverty guideline US-born (n=1345): 36.6% <=130% of poverty guideline; 16.6% >130-185% of poverty guideline; 46.7% >185% of poverty guideline; 46.7% >185% of poverty guideline Data source: ATUS (2003-2011)	Food preparation defined as total minutes spent preparing, cooking, serving food, clean up (e.g., putting away food and drinks, tidying the kitchen) Data source: ATUS (2003-2011)	Mean (SE) daily food preparation (minutes), adjusted Wald test, p<0.001 Im/migrant (lower income, n=2277): 107.8 (2.0) US-born (higher income, n=1345): 70.8 (2.1)	Hours worked/8, worked late hours, Nativity X origin interaction, Education, Single mother, Number children in HH, presence of child <6, maternal age, weekend diary day, and survey year

^a Abbreviations: ATUS: American Time Use Survey; min: minutes; FSP: Food Stamp Program; NR: Not Reported; OR: odds ratio; SE: standard error; SES: socioeconomic status; SNAP: Supplemental Nutrition Assistance Program; WIC: Special Supplemental Nutrition Program for Women, Infants and Children Bold indicates statistically significant findings

Table 4-d. Risk of bias for observational studies examining income and time spent on food-at-home-related activities^a

Article	Confounding	Selection of participants	Classification of exposures	Deviations from intended exposures	Missing data	Outcome measurement	Selection of the reported result
Bauer, 2012 ¹³	MODERATE	LOW	LOW	MODERATE	LOW	MODERATE	MODERATE
Dunn, 2015 ¹	MODERATE	MODERATE	LOW	LOW	MODERATE	MODERATE	MODERATE
Forrester, 2018 ²	SERIOUS	LOW	SERIOUS	LOW	NO INFORMATION	MODERATE	MODERATE
Gough, 2019 ³	MODERATE	LOW	LOW	LOW	MODERATE	MODERATE	MODERATE
Hamrick, 2011 ⁴	SERIOUS	LOW	LOW	LOW	LOW	MODERATE	MODERATE
Kim, 2020 ⁵	MODERATE	LOW	LOW	LOW	LOW	MODERATE	MODERATE
Monsivais, 2014 ¹²	SERIOUS	LOW	LOW	LOW	MODERATE	MODERATE	MODERATE
Raschke, 2012 ⁶	SERIOUS	LOW	LOW	SERIOUS	LOW	MODERATE	MODERATE
Restrepo, 2020 ⁷	SERIOUS	MODERATE	MODERATE	SERIOUS	MODERATE	MODERATE	MODERATE
Senia, 2017 ⁸	MODERATE	LOW	LOW	LOW	LOW	MODERATE	MODERATE
Sliwa, 2015 ⁹	SERIOUS	LOW	MODERATE	SERIOUS	MODERATE	MODERATE	MODERATE
Smith, 2014 ¹⁰	MODERATE	LOW	LOW	LOW	MODERATE	MODERATE	MODERATE
Wolfson, 2019 ¹¹	MODERATE	LOW	LOW	LOW	MODERATE	MODERATE	MODERATE

^a Possible ratings of low, moderate, serious, critical, or no information determined using the "Risk of Bias for Nutrition Observational Studies" tool (RoB-NObs) (Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.)

References of the articles included in the income and time spent on food-at-home-related activities rapid review

- 1. Bauer KW, Hearst MO, Escoto K, Berge JM, Neumark-Sztainer D. Parental employment and work-family stress: associations with family food environments. *Soc Sci Med.* 2012;75(3):496-504. doi:10.1016/j.socscimed.2012.03.026.
- 2. Dunn RA. Labor supply and household meal production among working adults in the Health and Retirement Survey. *Review of Economics of the Household*. 2013;13(2):437-457. doi:10.1007/s11150-013-9223-8.
- 3. Forrester K, Klein J. An analysis of female labor supply, home production, and household consumption expenditures. *J Demogr Econ.* 2018;84(3):257-307. doi:10.1017/dem.2018.8.
- 4. Gough M, Lippert AM, Martin MA. The role of time use behaviors in the risk of obesity among low-income mothers. *Women's Health Issues*. 2019;29(1):23-30. doi:10.1016/j.whi.2018.10.002.
- 5. Hamrick KS, Andrews M, Guthrie J, Hopkins D, McClelland K. How much time do Americans spend on food? *US Department of Agriculture, Economic Research Service*. 2011;EIB-86.
- Kim J, Rabbitt MP, Tuttle C. Changes in low-income households' spending and time use patterns in response to the 2013 sunset of the ARRA-SNAP benefit. *Applied Economic Perspectives and Policy*. 2019;42(4):777-795. doi:10.1093/aepp/ppz007.
- 7. Monsivais P, Aggarwal A, Drewnowski A. Time spent on home food preparation and indicators of healthy eating. *Am J Prev Med.* 2014;47(6):796-802. doi:10.1016/j.amepre.2014.07.033.
- 8. Raschke C. Food stamps and the time cost of food preparation. *Review of Economics of the Household*. 2011;10(2):259-275. doi:10.1007/s11150-011-9128-3.
- 9. Restrepo BJ, Zeballos E. The effect of working from home on major time allocations with a focus on food-related activities. Rev Econ Househ. 2020:1-23. doi:10.1007/s11150-020-09497-9.
- 10. Senia MC, Jensen HH, Zhylye vs.kyy O. Time in eating and food preparation among single adults. *Review of Economics of the Household*. 2014;15(2):399-432. doi:10.1007/s11150-014-9258-5.
- 11. Sliwa SA, Must A, Perea F, Economos CD. Maternal employment, acculturation, and time spent in food-related behaviors among Hispanic mothers in the United States. Evidence from the American Time Use Survey. *Appetite*. 2015;87:10-19. doi:10.1016/j.appet.2014.10.015.
- 12. Smith LP, Ng SW, Popkin BM. Resistant to the recession: Low-income adults' maintenance of cooking and away-from-home eating behaviors during times of economic turbulence. *Am J Public Health*. 2014;104(5):840-846. doi:10.2105/AJPH.2013.301677.
- 13. Wolfson JA, Ramsing R, Richardson CR, Palmer A. Barriers to healthy food access: Associations with household income and cooking behavior. *Prev Med Rep.* 2019;13:298-305. doi:10.1016/j.pmedr.2019.01.023.

Chapter 5 - What factors influence the purchase and/or consumption of at-home convenience foods? How are these foods described in the literature?

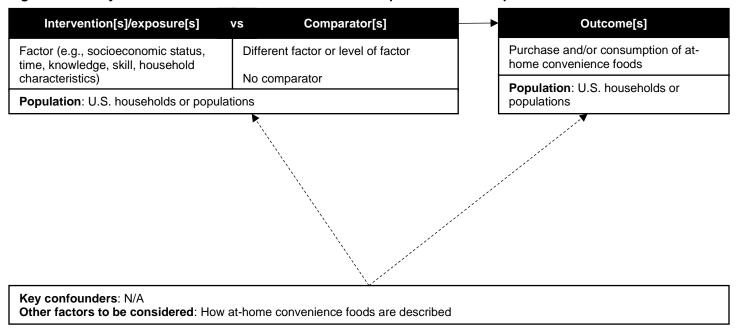
Sara Scinto-Madonich, MS,^a Laural Kelly English, PhD,^a Molly Higgins, MLIS,^b Marlana Bates, MPH, RD,^a Julie Nevins, PhD,^a Julia H Kim, PhD, MPH, RD,^a Emily Callahan, MS^c

Specific methods to conduct the evidence scan

Develop a protocol

The research question, "What factors influence the purchase and/or consumption of at home-convenience foods?" was addressed with an evidence scan. Similar to the rapid reviews, a protocol was developed and followed. However, results were not extracted and no risk of bias assessment was completed. The following section describes the volume and characteristics of articles that address the purchase and/or consumption of at home-convenience foods.

The analytic framework for the evidence scan examining the relationship between different factors and the purchase and/or consumption of at-home convenience foods is presented in **Figure 5-a**. This analytic framework visually represents the overall scope of the evidence scan question, and depicts the contributing elements that were examined and evaluated. The intervention or exposure of interest is any factor in U.S. households or populations. The comparator is a different factor or level or factor, or no comparator. The outcomes are purchase and/or consumption of at-home convenience foods in U.S. households or populations. There are no key confounders. The other factors to be considered are how at-home convenience foods are described in the literature and may impact the relationships of interest.


^a Analyst, NESR team; Panum Group, under contract with the FNS, USDA

^b Librarian, NESR team; Panum Group, under contract with the FNS, USDA

^c Project Lead, NESR team, NGAD, CNPP, FNS, USDA

Figure 5-a. Analytic framework for the evidence scan on the purchase/consumption of at-home convenience foods

Key definitions

<u>Food-at-home</u>: Food that is prepared at home and includes ready-to-eat and non-ready-to-eat foods that are brought from grocery stores, food pantries, super centers, mass merchandisers, convenience stores, drug stores, farmers markets, and food co-ops (ERS, 2018)

<u>Food-away-from-home:</u> Food prepared outside of home and includes food from full-service and fast-food restaurants (ERS, 2018)

<u>Fast-food restaurants:</u> Eating places where consumers pay before they eat (e.g., bakery, burger restaurant, and sandwich or coffee shop) (ERS, 2018)

Full-service restaurants: Eating places where consumers eat before they pay (ERS, 2018)

Legend Relationship(s) of interest Factors that may

Factors that may impact the relationship(s) of interest

Search for and select studies

The following outlines any departures from the search and select studies project methods for this specific evidence scan:

- Scopus was searched instead of Web of Science because of the overwhelming number of results from Web of Science. This decision was made because the two databases cover similar topic areas and because this was an evidence scan.
- 80% of all records were single-screened at title, abstract, and full-text levels and 20% of all records were dual-screened, independently at each of these levels.
- A manual search was not completed.

NESR analysts worked jointly with NEAT staff to establish the final inclusion and exclusion criteria and literature search strategy, which are detailed in **Table 5-a** and **Appendix 5-a**, respectively.

Table 5-a. Inclusion and exclusion criteria for the evidence scan on the purchase/consumption of at-home convenience foods

Category	Inclusion Criteria	Exclusion Criteria		
Study design	 Any study design, including qualitative, that is not a narrative review, systematic review, or meta- analysis 	Narrative reviewsSystematic reviewsMeta-analyses		
Intervention/ exposure	Any factor (e.g., socioeconomic status, time, knowledge, skill, household characteristics)	• N/A		
Comparator	Different factor or level of factorNo comparator	• N/A		
Outcomes	Purchase and/or consumption of at-home convenience foods that are: Ready-to-eat Ready-to-heat Ready-to-cook/bake Other	 Purchase and/or consumption of at-home foods that do not fit into the inclusion categories Purchase and/or consumption of food-away-from-home, including fast-food and full-service restaurants Purchase and/or consumption of beverages only 		
Publication date	 Jan 2008 – May 2021 Data inclusive of 2008 (e.g., 2000-2012; 2008-2009) 	 Before Jan 2008, after May 2021 Data prior to 2008 (e.g., 2000-2007; 1999-2005) 		
Publication status	 Articles that have been peer-reviewed Grey literature: reports that have not been peer-reviewed but are available from government and nongovernmental organizations 	 Articles that have not been peer reviewed and are not published in peer-reviewed journals, other than reports from government and nongovernmental organizations 		
Language	Articles published in English	Articles published in languages other than English		
Country	Studies conducted in the U.S.	Studies conducted outside the U.S.		
Study participants	Human participants/ populations	Non-human participants (e.g., animal studies, invitro models)		

Extract data

NESR analysts extracted data from each included article to objectively describe the body of evidence available to inform the evidence scan. The following outlines any departures from the extract data and assess risk of bias project methods for this specific question:

 Basic data extraction occurred at the full-text screening level, and therefore 80% of the articles were extracted by 1 analyst and 20% of the articles were extracted independently by 2 analysts and compared for agreement.

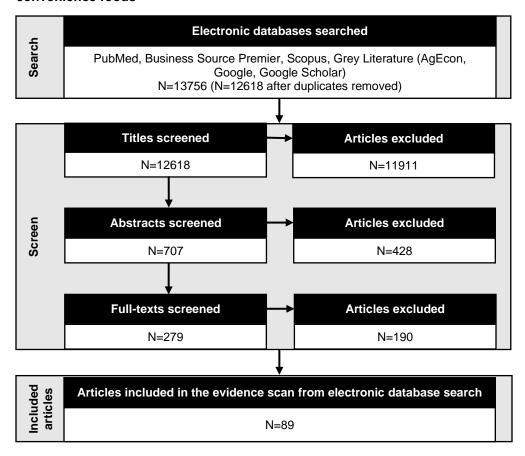
- The following data elements were extracted or bucketed into categories by the NESR analysts: publication year, study design, intervention/exposure category (factor), outcome categories (level(s) of convenience, food group(s), purchase and/or consumption), and any other notes.
 - Level of convenience groupings used to categorize included articles:
 - Ready-to-eat (RTE): foods that require no preparation before consumption
 - Ready-to-heat (RTH): foods that are already cooked, but require a change in temperature before consumption.
 - Ready-to-cook (RTC) or ready-to-bake (RTB): foods that are somewhat pre-prepared, but still require cooking or baking.
 - Ready-to-prepare (RTP): foods which require preparation of multiple ingredients, as well as cooking or baking
 - The specific ready-to-prepare level of convenience outcome category was added during the evidence scan process as we observed how convenience foods were being described in the literature. We listed an "Other" level of convenience outcome category in original protocol to allow for this specific situation.
 - Food groups used to categorize included articles
 - Vegetables
 - Fruit
 - Grains
 - Proteins
 - Dairy
 - Snacks
 - Sweets
 - Multi-component foods/meals
 - Other
 - Only factors and purchase and/or consumption outcome categories were extracted for qualitative studies. This was because the qualitative data was often not clear enough to determine the level of convenience and/or food groups.
 - For both qualitative and quantitative studies, factors and purchase and/or consumption categories were extracted. Level of convenience and food group(s) examined was also extracted for quantitative studies because the qualitative data was often not clear enough to determine the level of convenience and/or food groups.
- No results were extracted from the included articles
- No risk of bias assessment was completed

Describe the evidence

NESR analysts summarized the volume and characteristics of included studies to inform the question, what factors influence the purchase and/or consumption of at home-convenience foods? The NESR analysts summarized the data using evidence tables and figures. The results of this evidence scan do not answer the question, since no results were extracted, however it describes the landscape of available evidence pertaining to this topic.

Recommend future research

Recommendations for future research evaluating at home-convenience foods were determined based on the gaps and limitations observed during data extraction and the description of the evidence, as previously described in the project methods. Future work addressing these gaps and limitations may contribute to the body of evidence contributing to this topic.


Results

Literature search and screening results

The literature search yielded 12,618 search results after the removal of duplicates (see **Figure 5-b**). Dual-screening resulted in the exclusion of 11,911 titles, 428 abstracts, and 190 full-text articles. Reasons for full-text exclusion are in **Appendix 5-b**. A manual search was not conducted and all included articles were obtained through the electronic database search. The body of evidence included 89 articles:

Figure 5-b. Literature search and screen flowchart for the evidence scan on the purchase/consumption of at-home convenience foods

Description of the evidence

This evidence scan included 89 articles that examined the relationship between different factors and the purchase and/or consumption of at-home convenience foods. Sixty-five articles included cross-sectional data.¹⁻ 65 10 included qualitative data, 1,15,66-73 5 each were prospective cohort 4-78 and uncontrolled before-and-after studies, 79-83 and 3 each were non-RCTs84-86 and RCTs.87-89 Two articles included both cross-sectional and qualitative data.1,15

Intervention/exposure characteristics

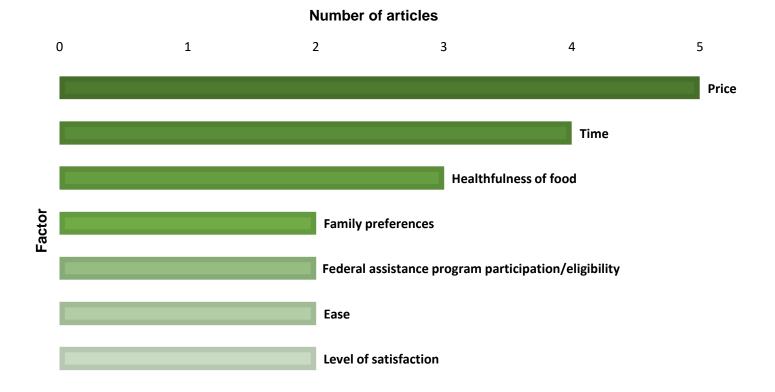
Ten articles included qualitative data^{1,15,66-73} and 81 articles included quantitative data.^{1-65,74-89} Within each article, 1 or more factors were identified or examined in relation to purchase and/or consumption of at-home convenience foods. Factors were identified by the study participants themselves in qualitative studies, while researchers selected which factors to study in relation to at-home convenience foods in quantitative studies.

Qualitative studies

The most common factor identified by study participants that influenced the purchase and/or consumption of at-home convenience foods was:

- price of food, 15,68-70,73
- time, 15,66,72,73

- healthfulness of the food, 15,66,68
- family preferences, 15,67
- federal assistance program participation/eligibility (such as SNAP or WIC),^{15,68}
- ease of preparation, 15,69
- and level of satisfaction.^{69,72}


The less common factors identified included:

- age,⁷³
- food security,¹⁵
- number of people in the household,68
- SES factor,⁶⁸
- knowledge/skill,⁷¹
- shopping frequency,¹
- day of the week (weekend v. weekday),72
- and meal skipping.⁷²

Figure 5-c shows the more common factors identified in qualitative studies in relation to at-home convenience foods.

Figure 5-c. Qualitative study factors identified related to the purchase/consumption of at-home convenience foods

Quantitative studies

The most common factors examined in quantitative studies in relation to the purchase and/or consumption of at-home convenience foods was:

- income, ^{2,4,7,10,16,17,19-21,23,26,29-31,34,38,45,47,53,54,56,59,60,62,65,77,78}
- race/ethnicity, ^{2,7,8,10,11,14-17,19-22,24,25,31,34,37-39,43,44,53,56,65,77}
- age, 7,10,16,17,19,21,28-30,34,38,42,45,47,50,53,54,65
- Sex. 7,10,16,17,19,21,30,34,37,38,47,53,55,65
- year (e.g., 2008, 2009, 2010),^{2,29,31,35,40,41,46,49,51,59,63,64,75}
- education, 2,10,16,17,29,34,47,54,56,60,65
- household characteristics (e.g., number of children in the household, marriage status, language spoken at home),^{7,15,29,30,34,47,54,56,62,65,77}
- federal assistance program participation/eligibility, 5,18,26,27,32-34,45,62,65
- food security, 1,9,15,30,52,53,58,61,74
- intervention (e.g., dietary behavior change intervention, price discount intervention, in-store healthy foods promotion intervention), 79,80,82,83,85,87-89

- price of food, 11,24,30,31,36,77,78
- and BMI. 10,34,37,45,76

Figure 5-d shows the more common factors examined in quantitative studies in relation to purchase/consumption of at-home convenience foods.

Figure 5-d. Quantitative study factors examined related to the purchase/consumption of at-home convenience foods

The less commonly examined factors were:

- lifestyle factors (e.g., smoking status, alcohol intake, stress/stress management, time, physical activity, breakfast consumption (yes or no), tradition/habit, shopping frequency, times cooking from scratch per day, identification as a healthy eater/cook),^{3,11,16,17,19,21,24,30,34,36-38,42,74}
- SES factors (e.g., overall SES, access/distance to a store, work hours, car ownership/access, quality of the food environment), 29,34,48,57,62,65,75,86
- personal characteristics (e.g., depressed mood, birthplace (US versus non-US), language(s) spoken, acculturation, knowledge/skill, food agency, family preferences), 7,11,13,24,36,47,74

- food characteristics (e.g., taste, brand, quality/healthfulness of food, package size, ease of preparation), 11,24,30,36,77,84
- location (e.g., urban versus rural/suburban, geographic region, city),^{4,29,56,57,63,75}
- federal assistance program-related factors (e.g., WIC food package revisions, amount of time since receiving SNAP benefits, WIC eligibility of item, use of WICShopper app),^{5,6,12,27,81}
- and other factors (e.g., store type, month of the year).^{4,26,39,41,59}

Outcome characteristics

At-home convenience foods were categorized based on the level of convenience, the food group(s) examined, and whether purchase and/or consumption was studied. The most commonly studied (and most convenient) category was RTE foods, followed by RTH foods, RTC or RTB foods, and ending with the least commonly studied (and least convenient) category of RTP foods:

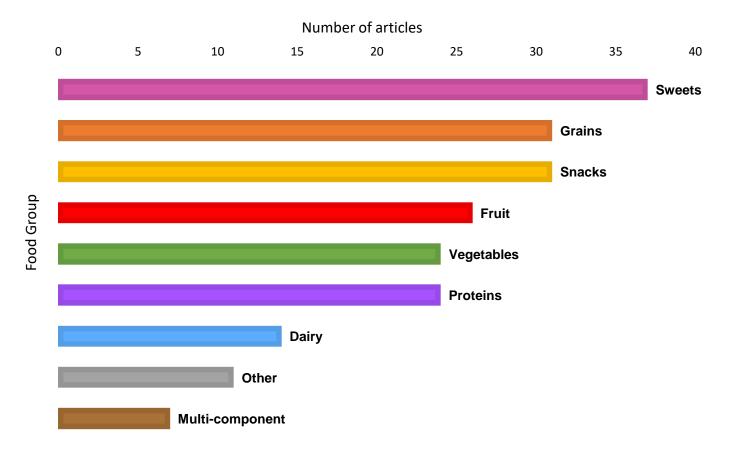
- Seventy-two articles studied RTE foods, 1-6,8,9,11,12,14-21,23-27,29-34,37-41,43-65,74,76-89
- 45 articles studied foods that were RTH, 1,2,4,5,7,8,10,12,13,15,20,22,25-29,31-33,35-37,39-41,43-47,51,52,54,60,62,63,65,74-76,81,87-
- 19 articles studied RTC or RTB foods, 2,4,26,32,33,36,39-41,43,44,46,51,60,63,64,74,76,87
- and 11 articles studied foods that were RTP.^{2,4,12,20,26,33,39,40,43,44,60}

The most commonly studied foods were sweets, followed by grains, snacks, vegetables, fruit, multi-component foods/meals, proteins, dairy, and other foods that did not fit into any of the listed groupings:

- Thirty-seven articles studied at-home convenience foods that were sweets; 2,4,8,12,15,20,21,23,26,27,29,31-34,37,39-41,43,44,46,49-52,58,60,63-65,74,76,79,85-87
- 32 articles studied grains; 6,8,12,15,17,19-21,27,30-32,39-41,43,44,46,49-51,53,55,56,61,62,65,74,77,79,83,89
- 30 articles studied snacks; 2,4,15,20,23,26,27,29,31-34,37,39-41,43,44,46,49-52,60,63,65,74,80,82,86,87
- 28 articles each studied vegetables, 1,2,4,5,8,12,26,28,29,31,33,38-40,43-46,59-62,65,75,79,81,87,88
- 28 articles studied fruit, 1,2,4,5,8,16,26,28,29,31,33,38,40,43-46,60,62,63,65,75,78,79,81,85,87,88
- 28 articles studied multi-component foods/meals; 2,4,7,10,12,20,22,25,29,32,35-37,40,41,43-47,52,60,62-64,74,76,89
- 26 articles studied proteins; 2-4,11,14,15,24,26,29,32,33,35,39-41,43-46,49,51,62,65,76,84,87
- 14 articles studied dairy; 6,15,32,33,39,40,43,44,46,62-65,76
- and 13 articles studied other foods. 9,12,13,18,25,27,29,32,44,46,48,54,57

Lastly, 59 articles examined purchase of at-home convenience foods 1-6,8,9,11,12,14,18,23,24,26,27,29-33,35,36,39-41,43,46,49,52,54,56,57,59-68,70,73,75-84,86-89 and 38 articles examined consumption of at-home convenience foods 1,7,10,13,15-17,19-22,24,25,28,30,34,37,38,42,44,45,47,48,50,51,53,55,58,66,67,69-74,85,86

Ready-to-eat food groups

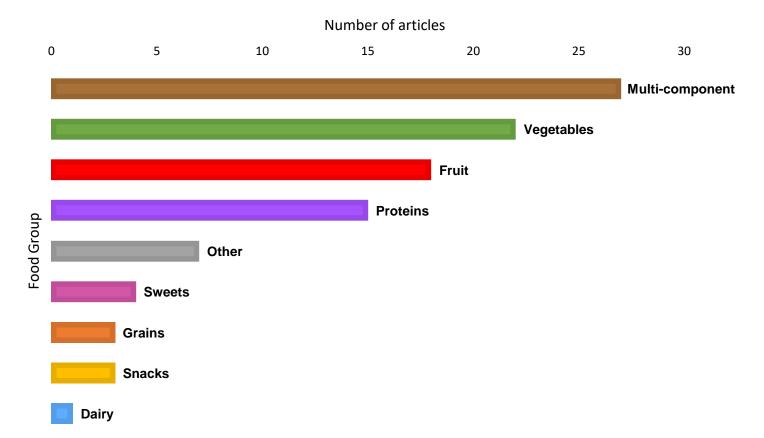

Of the RTE foods, the most common group was:

- sweets (e.g., candy, cookies, cupcakes), 2,4,8,12,15,20,21,23,26,27,29,31-34,37,39-41,43,44,46,49-52,58,60,63-65,74,76,79,85-87
- grains (e.g., bread, cereal), 6,8,15,17,19-21,27,30-32,39-41,43,44,46,49-51,53,55,56,61,62,65,74,77,79,83,89
- snacks (e.g., granola bars, chips, crackers), 2,4,15,20,23,26,27,29,31-34,37,39-41,43,44,46,49-52,60,63,65,74,80,82,86,87
- fruit (e.g., canned fruit, apples, bananas), 1,2,4,5,8,16,26,29,31,33,38,40,43-46,60,62,63,65,78,79,81,85,87,88
- vegetables (e.g., canned vegetables, bagged salad, baby carrots), 1,2,4,5,8,26,29,31,33,38,39,43-46,59-62,65,79,81,87,88
- proteins (e.g., canned beans/tuna, peanut butter, deli meat), 2-4,11,14,15,24,26,29,32,33,39,41,43-46,49,51,62,65,76,84,87
- dairy (e.g., yogurt, cheese), 6,15,32,33,39,40,43,44,46,62-65,76
- other (e.g., condiments, unspecified), 9,18,25,27,29,32,44,46,48,54,57
- and finally multi-component foods/meals.^{29,32,44,46,47,63,64}

Figure 5-e shows the breakdown of RTE food groups, which was fairly mixed.

Figure 5-e. Ready-to-Eat Food Groups

Ready-to-heat food groups


The most common RTH group was:

- multi-component foods/meals (e.g., frozen or chilled pre-cooked meals),^{2,4,7,10,12,20,22,25,29,32,35-37,40,41,43-47,52,60,62,63,74,76,89}
- vegetables (e.g., frozen vegetables), 1,2,4,5,8,12,26,28,29,31,33,39,40,43,44,46,60,65,75,81,87,88
- fruit (e.g., frozen fruit), 1,2,4,5,8,26,28,29,31,33,43,44,46,60,75,81,87,88
- proteins (e.g., frozen or chilled pre-cooked meats/fish), ^{2,4,15,26,32,33,35,39,41,43,44,46,51,76,87}
- other (e.g., sauces, broth, unspecified), 12,13,27,29,44,46,54
- sweets (e.g., frozen cakes/pies),^{26,33,43,46}
- grains (e.g., frozen pancakes/waffles, instant rice), 12,43,46
- snacks (e.g., frozen snacks), 40,43,46
- and ending with dairy (e.g., frozen whipped topping, cheese dip).⁴⁶

Figure 5-f shows the breakdown of RTH food groups. Compared to the more convenient RTE food group breakdown, the share for multi-component foods/meals increased substantially and the shares for grains, snacks, sweets, and dairy decreased substantially.

Figure 5-f. Ready-to-Heat Food Groups

Ready-to-cook and ready-to-bake food groups

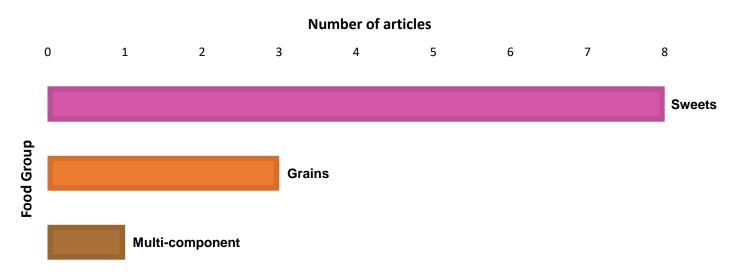
For the RTC/RTB foods, the most common category became:

- proteins (e.g., processed meat), 2,4,26,32,33,39-41,51,76,87
- multi-component foods/meals (e.g., instant mashed potatoes), 36,43,44,46,60,63,64,74
- grains (e.g., microwave popcorn), 43,44,46
- snacks.⁶³
- sweets (e.g., cookie dough, RTB desserts),^{33,39,43,46,63}
- and vegetables (e.g., pre-cut fresh vegetables).²⁶

Figure 5-g shows the breakdown of RTC/RTB food groups. The share for proteins increased for this category, mainly because bacon was included in the processed meat category of many articles. The shares for vegetables and snacks decreased, and the dairy, fruit, and other categories were not represented in the RTC/RTB level of convenience.

Figure 5-g. Ready-to-Cook/Ready-to-Bake Food Groups

Ready-to-prepare food groups


There were only 3 groups represented in the RTP category. From most to least common:

- sweets (e.g., baking mixes), 2,4,26,33,39,40,44,60
- grains (e.g., pancake mix), 12,40,43
- and multi-component foods/meals (e.g., boxed mac and cheese).²⁰

Figure 5-h shows the breakdown of RTP food groups. The share for sweets dominated this category, the share for multi-component foods/meals decreased substantially, and RTP vegetables, snacks, and proteins were not found in the literature.

Figure 5-h. Ready-to-Prepare Food Groups

Research recommendations

- 1. Establish and use standard definitions for at-home convenience foods, RTE, RTH, RTP, RTC, and RTB to improve their identification, as well as the ability to compare results between studies.
- 2. Provide sufficient detail about specific foods included in a food category to help determine whether the outcome fits the eligibility criteria of at-home convenience foods.

References of the articles included in the convenience food evidence scan

- 1. Litton MM, Beavers AW. The relationship between food security status and fruit and vegetable intake during the covid-19 pandemic. *Nutrients*. 2021;13(3):1-14. doi: 10.3390/nu13030712.
- Lacko A, Maselko J, Popkin B, Ng SW. Socioeconomic and racial/ethnic disparities in the nutritional quality of packaged food purchases in the U.S., 2008-2018. Public Health Nutrition. 2021. doi: 10.1017/S1368980021000367.
- 3. Winham DM, Davitt ED, Heer MM, Shelley MC. Pulse knowledge, attitudes, practices, and cooking experience of midwestern us university students. *Nutrients*. 2020;12(11):1-13. doi: 10.3390/nu12113499.
- Lacko A, Ng SW, Popkin B. Urban vs.. Rural socioeconomic differences in the nutritional quality of household packaged food purchases by store type. *International Journal of Environmental Research and Public Health*. 2020;17(20):1-22. doi: 10.3390/ijerph17207637.
- 5. Tseng M, Mastrantonio C, Glanz H, Volpe RJ, Iii N, D. B N. Fruit and Vegetable Purchasing Patterns and Supplemental Nutrition Assistance Program Participation: Findings From a Nationally Representative Survey. *Journal of the Academy of Nutrition and Dietetics*. 2020;120(10):1633-1642. doi: 10.1016/j.jand.2020.05.016.
- 6. Zhang Q, Zhang J, Park K, Tang C. Association between usage of an app to redeem prescribed food benefits and redemption behaviors among the special supplemental nutrition program for women, infants, and children participants: Cross-sectional study. *JMIR mHealth and uHealth*. 2020;8(10). doi: 10.2196/20720.
- 7. Kwon S, Wang-Schweig M, Kandula NR. Body composition, physical activity, and convenience food consumption among asian american youth: 2011–2018 NHANES. *International Journal of Environmental Research and Public Health.* 2020;17(17):1-13. doi: 10.3390/ijerph17176187.
- 8. Palmer SM, Winham DM. Midwest consumer shopping habits, nutrition knowledge, and latino tienda use. *Health Behavior and Policy Review.* 2020;7(2):79-91. doi: 10.14485/HBPR.7.2.1.
- Lyonnais MJ, Rafferty AP, Pitts SJ, Blanchard RJ, Kaur AP. Examining shopping patterns, use of food-related resources, and proposed solutions to improve healthy food access among food insecure and food secure Eastern North Carolina residents. International Journal of Environmental Research and Public Health. 2020;17(10). doi: 10.3390/ijerph17103361.
- Overcash F, Davey C, Zhang Y, Reicks M. Evening meal types and family meal characteristics: Associations with demographic characteristics and food intake among adolescents. *Nutrients*. 2020;12(4). doi: 10.3390/nu12040886.
- 11. Heer MM, Winham DM. Bean preferences vary by acculturation level among latinas and by ethnicity with non-hispanic white women. *International Journal of Environmental Research and Public Health*. 2020;17(6). doi: 10.3390/ijerph17062100.
- 12. Rex SM, Trabulsi J, Baker S, Bodt B, Robson SM. Food Purchasing Behaviors of WIC Participants: What Non-WIC Eligible Foods Items Are Being Purchased. *American Journal of Health Promotion*. 2020;34(3):307-310. doi: 10.1177/0890117119892765.
- 13. Wolfson JA, Lahne J, Raj M, Insolera N, Lavelle F, Dean M. Food agency in the united states: Associations with cooking behavior and dietary intake. *Nutrients*. 2020;12(3). doi: 10.3390/nu12030877.
- 14. Heer MM, Winham DM. Food behaviors, health, and bean nutrition awareness among low-income men: A pilot study. *International Journal of Environmental Research and Public Health*. 2020;17(3). doi: 10.3390/ijerph17031039.
- 15. Palmer SM, Knoblauch ST, Winham DM, Hiller MB, Shelley MC. Putting knowledge into practice: Low-income women talk about food choice decisions. *International Journal of Environmental Research and Public Health.* 2020;17(14):1-16. doi: 10.3390/ijerph17145092.
- 16. Sullivan VK, Na M, Proctor DN, Kris-Etherton PM, Petersen KS. Consumption of Dried Fruits Is Associated with Greater Intakes of Underconsumed Nutrients, Higher Total Energy Intakes, and Better Diet Quality in US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey, 2007-2016. *Journal of the Academy of Nutrition and Dietetics*. 2020. doi: 10.1016/j.jand.2020.08.085.
- 17. Zhu Y, Jain N, Vanage V, Holschuh N, Agler AH, Smith JD. Association between ready-to-eat cereal consumption and nutrient intake, nutritional adequacy, and diet quality in adults in the national health and nutrition examination survey 2015-2016. *Nutrients*. 2019;11(12). doi: 10.3390/nu11122952.
- 18. Franckle RL, Thorndike AN, Moran AJ, et al. Supermarket Purchases Over the Supplemental Nutrition Assistance Program Benefit Month: A Comparison Between Participants and Nonparticipants. *American Journal of Preventive Medicine*. 2019;57(6):800-807. doi: 10.1016/j.amepre.2019.07.025.
- 19. Smith JD, Zhu Y, Vanage V, Jain N, Holschuh N, Agler AH. Association between ready-to-eat cereal consumption and nutrient intake, nutritional adequacy, and diet quality among infants, toddlers, and children in the national health and nutrition examination survey 2015-2016. *Nutrients*. 2019;11(9). doi: 10.3390/nu11091989.
- 20. Fertig AR, Loth KA, Trofholz AC, et al. Compared to Pre-prepared Meals, Fully and Partly Home-Cooked Meals in Diverse Families with Young Children Are More Likely to Include Nutritious Ingredients. *Journal of the Academy of Nutrition and Dietetics*. 2019;119(5):818-830. doi: 10.1016/j.jand.2018.12.006.
- 21. Fulgoni VL, lii B, M F, L C. Oatmeal-containing breakfast is associated with better diet quality and higher intake of key food groups and nutrients compared to other breakfasts in children. *Nutrients*. 2019;11(5). doi: 10.3390/nu11050964.

- 22. Bowen ME, Casola AR, Coleman C, Monahan L. Community Food Pantry (CFP) Recipients' Food Challenges: Latino Households with at Least One Member Working as Farm Worker Compared to Other CFP Households. *Journal of Hunger and Environmental Nutrition*. 2019;14(1-2):128-140. doi:
- 23. French SA, Tangney CC, Crane MM, Wang Y, Appelhans BM. Nutrition quality of food purchases varies by household income: The SHoPPER study. *BMC Public Health*. 2019;19(1). doi: 10.1186/s12889-019-6546-2.
- 24. Winham DM, Tisue ME, Palmer SM, Cichy KA, Shelley MC. Dry bean preferences and attitudes among midwest hispanic and non-hispanic white women. *Nutrients*. 2019;11(1). doi: 10.3390/nu11010178.
- 25. Babatunde OT, Briley PM, White BM, Fang X, Ellis C. Dietary Practices Among Stroke-survivors—Racial/Ethnic Differences. *Journal of Stroke and Cerebrovascular Diseases*. 2018;27(11):2926-2931. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.026.
- 26. Taillie LS, Grummon AH, Miles DR. Nutritional Profile of Purchases by Store Type: Disparities by Income and Food Program Participation. *American Journal of Preventive Medicine*. 2018;55(2):167-177. doi: 10.1016/j.amepre.2018.04.024.
- 27. Ng SW, Hollingsworth BA, Busey EA, Wandell JL, Miles DR, Poti JM. Federal Nutrition Program Revisions Impact Low-income Households' Food Purchases. *American Journal of Preventive Medicine*. 2018;54(3):403-412. doi: 10.1016/j.amepre.2017.12.003.
- 28. Storey M, Anderson P. Total fruit and vegetable consumption increases among consumers of frozen fruit and vegetables. *Nutrition*. 2018;46:115-121. doi: 10.1016/j.nut.2017.08.013.
- 29. Kornrich S, Roberts A. Household Income, Women's Earnings, and Spending on Household Services, 1980–2010. *Journal of Marriage and Family.* 2018;80(1):150-165. doi: 10.1111/jomf.12450.
- 30. Dominick SR, Bir C, Widmar NO, Acharya L, Holly Wang H, Wilcox M. Exploring preferences beyond the (cereal) box: Readyto-eat breakfast cereal buying behaviors. *International Food and Agribusiness Management Review.* 2018;21(8):1185-1201. doi: 10.22434/IFAMR2017.0113.
- 31. Taillie LS, Ng SW, Xue Y, Harding M. Deal or no deal? The prevalence and nutritional quality of price promotions among U.S. food and beverage purchases. *Appetite*. 2017;117:365-372. doi: 10.1016/j.appet.2017.07.006.
- 32. Franckle RL, Moran A, Hou T, et al. Transactions at a Northeastern Supermarket Chain: Differences by Supplemental Nutrition Assistance Program Use. *American Journal of Preventive Medicine*. 2017;53(4):e131-e138. doi: 10.1016/j.amepre.2017.06.019.
- 33. Grummon AH, Taillie LS. Nutritional profile of Supplemental Nutrition Assistance Program household food and beverage purchases. *American Journal of Clinical Nutrition*. 2017;105(6):1433-1442. doi: 10.3945/ajcn.116.147173.
- 34. Gustat J, Lee YS, O'Malley K, et al. Personal characteristics, cooking at home and shopping frequency influence consumption. *Preventive Medicine Reports*. 2017;6:104-110. doi: 10.1016/j.pmedr.2017.02.007.
- 35. Surathkal P, Dey MM, Engle CR, Chidmi B, Singh K. Consumer demand for frozen seafood product categories in the United States. *Aquaculture Economics and Management*. 2017;21(1):9-24. doi: 10.1080/13657305.2017.1265020.
- 36. Horning ML, Fulkerson JA, Friend SE, Story M. Reasons Parents Buy Prepackaged, Processed Meals: It Is More Complicated Than "I Don't Have Time". *Journal of Nutrition Education and Behavior*. 2017;49(1):60-66.e61. doi: 10.1016/j.ineb.2016.08.012.
- 37. Errisuriz VL, Pasch KE, Perry CL. Perceived stress and dietary choices: The moderating role of stress management. *Eating Behaviors*. 2016;22:211-216. doi: 10.1016/j.eatbeh.2016.06.008.
- 38. Freedman MR, Fulgoni VL. Canned Vegetable and Fruit Consumption Is Associated with Changes in Nutrient Intake and Higher Diet Quality in Children and Adults: National Health and Nutrition Examination Survey 2001-2010. *Journal of the Academy of Nutrition and Dietetics*. 2016;116(6):940-948. doi: 10.1016/j.jand.2015.10.013.
- 39. Stern D, Poti JM, Ng SW, Robinson WR, Gordon-Larsen P, Popkin BM. Where people shop is not associated with the nutrient quality of packaged foods for any racial-ethnic group in the United States. *American Journal of Clinical Nutrition*. 2016:103(4):1125-1134. doi: 10.3945/aicn.115.121806.
- 40. Taillie LS, Ng SW, Popkin BM. Walmart and Other Food Retail Chains: Trends and Disparities in the Nutritional Profile of Packaged Food Purchases. *American Journal of Preventive Medicine*. 2016;50(2):171-179. doi: 10.1016/j.amepre.2015.07.015.
- 41. Stern D, Ng SW, Popkin BM. The Nutrient Content of U.S. Household Food Purchases by Store Type. *American Journal of Preventive Medicine*. 2016;50(2):180-190. doi: 10.1016/j.amepre.2015.07.025.
- 42. Wolfson JA, Bleich SN, Smith KC, Frattaroli S. What does cooking mean to you?: Perceptions of cooking and factors related to cooking behavior. *Appetite*. 2016;97:146-154. doi: 10.1016/j.appet.2015.11.030.
- 43. Poti JM, Mendez MA, Ng SW, Popkin BM. Highly processed and ready-to-eat packaged food and beverage purchases differ by race/ethnicity among US households. *Journal of Nutrition*. 2016;146(9):1722-1730. doi: 10.3945/jn.116.230441.
- 44. Eicher-Miller HA, Fulgoni VL, lii K. Processed food contributions to energy and nutrient intake differ among US children by race/ethnicity. *Nutrients*. 2015;7(12):10076-10088. doi: 10.3390/nu7125503.
- 45. Comerford KB. Frequent canned food use is positively associated with nutrient-dense food group consumption and higher nutrient intakes in US children and adults. *Nutrients*. 2015;7(7):5586-5600. doi: 10.3390/nu7075240.
- 46. Poti JM, Mendez MA, Ng SW, Popkin BM. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? *American Journal of Clinical Nutrition*. 2015;101(6):1251-1262. doi: 10.3945/ajcn.114.100925.
- 47. Langellier BA, Brookmeyer R, Wang MC, Glik D. Language use affects food behaviours and food values among Mexicanorigin adults in the USA. *Public Health Nutrition*. 2015;18(2):264-274. doi: 10.1017/S1368980014000287.
- 48. Leslie T, Pawloski L, Kallman-Price J, et al. Survey of health status, nutrition and geography of food selection of chronic liver disease patients. *Annals of Hepatology*. 2014;13(5):533-540. doi: 10.1016/s1665-2681(19)31253-0.

- 49. Ford CN, Ng SW, Popkin BM. Are food and beverage purchases in households with preschoolers changing?: A longitudinal analysis from 2000 to 2011. *American Journal of Preventive Medicine*. 2014;47(3):275-282. doi: 10.1016/j.amepre.2014.05.007.
- 50. Reicks M, Jonnalagadda S, Albertson AM, Joshi N. Total dietary fiber intakes in the US population are related to whole grain consumption: Results from the National Health and Nutrition Examination Survey 2009 to 2010. *Nutrition Research*. 2014;34(3):226-234. doi: 10.1016/i.nutres.2014.01.002.
- 51. Slining MM, Mathias KC, Popkin BM. Trends in Food and Beverage Sources among US Children and Adolescents: 1989-2010. *Journal of the Academy of Nutrition and Dietetics*. 2013;113(12):1683-1694. doi: 10.1016/j.jand.2013.06.001.
- 52. Nackers LM, Appelhans BM. Food insecurity is linked to a food environment promoting obesity in households with children. *Journal of Nutrition Education and Behavior.* 2013;45(6):780-784. doi: 10.1016/j.jneb.2013.08.001.
- Albertson AM, Franko DL, Thompson DR, Tuttle C, Holschuh NM. Ready-to-Eat Cereal Intake is Associated with an Improved Nutrient Intake Profile among Food Insecure Children in the United States. *Journal of Hunger and Environmental Nutrition*. 2013;8(2):200-220. doi: 10.1080/19320248.2013.786664.
- 54. Ma Y, Ailawadi KL, Grewal D. Soda versus cereal and sugar versus fat: Drivers of healthful food intake and the impact of diabetes diagnosis. *Journal of Marketing*. 2013;77(3):101-120. doi: 10.1509/jm.11.0443.
- 55. Albertson AM, Wold AC, Joshi N. Ready-to-eat cereal consumption patterns: The relationship to nutrient intake, whole grain intake, and body mass index in an older American population. *Journal of Aging Research*. 2012;2012. doi: 10.1155/2012/631310.
- 56. Castetbon K, Harris JL, Schwartz MB. Purchases of ready-to-eat cereals vary across US household sociodemographic categories according to nutritional value and advertising targets. *Public Health Nutrition*. 2012;15(8):1456-1465. doi:
- 57. Hearst MO, Pasch KE, Laska MN. Urban v. suburban perceptions of the neighbourhood food environment as correlates of adolescent food purchasing. *Public Health Nutrition*. 2012;15(2):299-306. doi: 10.1017/S1368980011002114.
- 58. Cunningham TJ, Barradas DT, Rosenberg KD, May AL, Kroelinger CD, Ahluwalia IB. Is maternal food security a predictor of food and drink intake among toddlers in Oregon? *Maternal and child health journal*. 2012;16 Suppl 2:339-346. doi: 10.1007/s10995-012-1094-8.
- 59. Kuchler F. Is it food quality or quantity that responds to changing income? *Applied Economic Perspectives and Policy*. 2011;33(2):205-221. doi: 10.1093/aepp/ppr002.
- 60. Lacko A, Delamater P, Gordon-Larsen P, Wen Ng S. Geographic patterns and socioeconomic differences in the nutritional quality of household packaged food purchases in the United States. *Health Place*. 2021;69:102567. doi: 10.1016/j.healthplace.2021.102567.
- 61. Larson N, Laska MN, Neumark-Sztainer D. Food Insecurity, Diet Quality, Home Food Availability, and Health Risk Behaviors Among Emerging Adults: Findings From the EAT 2010–2018 Study. *American Journal of Public Health*. 2020;110(9):1422-1428. doi: 10.2105/AJPH.2020.305783.
- 62. Rahko vs.ky I, Jo Y. Higher Incomes and Greater Time Constraints Lead to Purchasing More Convenience Foods. 2018;June 2018(05). doi:
- 63. Okrent AM, Kumcu A. U.S. Households' Demand for Convenience Foods. 2016:40. doi:
- 64. Okrent A. Purchases of Foods by Convenience Type Driven by Prices, Income, and Advertising. 2016(10):1. doi:
- 65. Rahko vs.ky I, Jo Y, Carlson A. Consumers Balance Time and Money in Purchasing Convenience Foods. 2018. doi:
- 66. Hammons A, Olvera N, Teran-Garcia M, Villegas E, Fiese B. Mealtime resistance: Hispanic mothers' perspectives on making healthy eating changes within the family. *Appetite*. 2021;159. doi: 10.1016/j.appet.2020.105046.
- 67. Trofholz A, Richardson K, Mohamed N, Vang C, Berge JM. How a Racially/Ethnically Diverse and Immigrant Sample Qualitatively Describes the Role of Traditional and Non-traditional Foods in Feeding Their Children. *Journal of Immigrant and Minority Health*, 2020;22(6):1155-1162, doi: 10.1007/s10903-020-00999-3.
- 68. Askelson NM, Meier C, Baquero B, Friberg J, Montgomery D, Hradek C. Understanding the Process of Prioritizing Fruit and Vegetable Purchases in Families With Low Incomes: "A Peach May Not Fill You Up as Much as Hamburger". *Health Education and Behavior*. 2018;45(5):817-823. doi: 10.1177/1090198117752790.
- 69. Palmer SM, Winham DM, Oberhauser AM, Litchfield RE. Socio-ecological barriers to dry grain pulse consumption among low-income women: A mixed methods approach. *Nutrients*. 2018;10(8). doi: 10.3390/nu10081108.
- 70. Ugalde M, Brand L, Beltran A, et al. Mommio's recipe box: Assessment of the cooking habits of mothers of preschoolers and their perceptions of recipes for a video game. *JMIR Serious Games*. 2017;5(4). doi: 10.2196/games.8142.
- 71. Tobey LN, Koenig HF, Brown NA, Manore MM. Reaching low-income mothers to improve family fruit and vegetable intake: Food hero social marketing campaign—research steps, development and testing. *Nutrients*. 2016;8(9). doi: 10.3390/nu8090562.
- 72. Griffith DM, Wooley AM, Allen JO. "I'm Ready to Eat and Grab Whatever I Can Get": Determinants and Patterns of African American Men's Eating Practices. *Health Promotion Practice*. 2013;14(2):181-188. doi: 10.1177/1524839912437789.
- 73. DiSantis KI, Grier SA, Odoms-Young A, et al. What "price" means when buying food: Insights from a multisite qualitative study with Black Americans. *American Journal of Public Health*. 2013;103(3):516-522. doi: 10.2105/AJPH.2012.301149.
- 74. Berge JM, Fertig AR, Trofholz A, Neumark-Sztainer D, Rogers E, Loth K. Associations between parental stress, parent feeding practices, and child eating behaviors within the context of food insecurity. *Preventive Medicine Reports*. 2020;19. doi: 10.1016/j.pmedr.2020.101146.
- 75. Winkler MR, Lenk KM, Erickson DJ, Caspi CE, Laska MN. Longitudinal fruit and vegetable sales in small food retailers: Response to a novel local food policy and variation by neighborhood socioeconomic status. *International Journal of Environmental Research and Public Health.* 2020;17(15):1-15. doi: 10.3390/ijerph17155480.

- 76. Chen D, Jaenicke EC, Volpe RJ. The Healthfulness of Food-at-Home Expenditures, the Local Food Environment, and Childhood Obesity. *American Journal of Health Promotion*. 2019;33(3):412-419. doi: 10.1177/0890117118786871.
- 77. Rahko vs.ky I, Lin BH, Lin CTJ, Lee JY. Effects of the Guiding Stars Program on purchases of ready-to-eat cereals with different nutritional attributes. *Food Policy*. 2013;43:100-107. doi: 10.1016/j.foodpol.2013.08.013.
- 78. Weatherspoon DD, Oehmke JF, Coleman MA, Dembele AS, Weatherspoon LJ. Will Long Term Food Desert Consumers Purchase Fresh Fruits and Vegetables? 2012;27(3):5. doi:
- 79. Cassinat RA, Bruening M, Crespo NC, et al. Effects of a community-based pilot intervention on home food availability among U.S. households. *International Journal of Environmental Research and Public Health.* 2020;17(22):1-11. doi: 10.3390/ijerph17228327.
- 80. Pharis ML, Colby L, Wagner A, Mallya G. Sales of healthy snacks and beverages following the implementation of healthy vending standards in City of Philadelphia vending machines. *Public Health Nutrition*. 2018;21(2):339-345. doi: 10.1017/S1368980017001914.
- 81. Andreyeva T, Luedicke J. Incentivizing fruit and vegetable purchases among participants in the Special Supplemental Nutrition Program for Women, Infants, and Children. *Public Health Nutrition*. 2015;18(1):33-41. doi: 10.1017/S1368980014000512.
- 82. Dannefer R, Williams DA, Baronberg S, Silver L. Healthy bodegas: Increasing and promoting healthy foods at corner stores in New York City. *American Journal of Public Health*. 2012;102(10):e27-e31. doi: 10.2105/AJPH.2011.300615.
- 83. Sutherland LA, Kaley LA, Fischer L. Guiding Stars: The effect of a nutrition navigation program on consumer purchases at the supermarket. *American Journal of Clinical Nutrition*. 2010;91(4):1090S-1094S. doi: 10.3945/ajcn.2010.28450C.
- Çakır M, Balagtas JV, Okrent AM, Urbina-Ramirez M. Effects of Package Size on Household Food Purchases. Applied Economic Perspectives and Policy. 2021;43(2):781-801. doi: 10.1093/aepp/ppz019.
- 85. Whiteside-Mansell L, Swindle TM. Evaluation of together we inspire smart eating: Pre-school fruit and vegetable consumption. *Health Education Research.* 2019;34(1):72-83. doi: 10.1093/her/cyy048.
- 86. Rogus S, Athens J, Cantor J, Elbel B. Measuring Micro-Level Effects of a New Supermarket: Do Residents Within 0.5 Mile Have Improved Dietary Behaviors? *Journal of the Academy of Nutrition and Dietetics*. 2018;118(6):1037-1046. doi: 10.1016/j.jand.2017.06.360.
- 87. Moran A, Thorndike A, Franckle R, et al. Financial incentives increase purchases of fruit and vegetables among lower-income households with children. *Health Affairs*. 2019;38(9):1557-1566. doi: 10.1377/hlthaff.2018.05420.
- 88. Polacsek M, Moran A, Thorndike AN, et al. A Supermarket Double-Dollar Incentive Program Increases Purchases of Fresh Fruits and Vegetables Among Low-Income Families With Children: The Healthy Double Study. *Journal of Nutrition Education and Behavior*. 2018;50(3):217-228.e211. doi: 10.1016/j.jneb.2017.09.013.
- 89. Foster GD, Karpyn A, Wojtanowski AC, et al. Placement and promotion strategies to increase sales of healthier products in supermarkets in low-income, ethnically diverse neighborhoods: A randomized controlled trial. *American Journal of Clinical Nutrition*. 2014;99(6):1359-1368. doi: 10.3945/ajcn.113.075572.

Acknowledgments and funding

The NESR team members were involved in: establishing all aspects of the protocol, which presented the plan for examining the scientific evidence, including the inclusion and exclusion criteria; reviewing all studies that met the criteria they set; deliberating on the body of evidence for each question. The NESR team, with assistance from NEAT and Project Leadership, facilitated, executed, and documented the work necessary to ensure the reviews were completed in accordance with NESR methodology. NESR staff thanks NESR Lead Nutritionist Julie Obbaggy for her consultation and review of materials.

NESR staff thanks USDA's NEAT, specifically TusaRebecca Pannucci, Clarissa (Claire) Brown, Hazel Hiza, Kristin Koegel, Kevin Kuczynski, Mark Lino, Emily Madan, Verena McClain, and Kevin Meyers Mathieu for their collaboration on all aspects of question protocols to ensure that the reviews completed as part of this project would be able to inform USDA's Food Plans. NESR thanks them for their time and expertise.

NESR staff thanks USDA's Director of NGAD Eve Stoody for her guidance, leadership, and support throughout this project.

NESR staff thank USDA's Economic Research Service, specifically, Debbie Rubas, Andrea Carlson, Jordan Jones, Matthew MacLachlan, and Sabrina Young for their review of the literature search strategy for the rapid review on income and price of food, which subsequently informed the other evidence scans and rapid reviews. NESR thanks them for their time and expertise.

NESR staff thank Gisela Butera and Nancy Terry from National Institute of Health Library, Division of Library Services in the Office of Research Services for developing the initial literature search strategy for the rapid review on income and price of food. NESR thanks them for their time and expertise.

Funding: United States Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Alexandria, VA

Appendices

Appendix 0-a: Abbreviations

Abbreviation	Full name
ATUS	American Time Use Survey
ВМІ	Body Mass Index
CACFP	Child and Adult Care Food Program
CNPP	Center for Nutrition Policy and Promotion
CSFII	Continuing Survey of Food Intakes by Individuals II
DGA	Dietary Guidelines for Americans
FNS	Food and Nutrition Service
FSP	Food Stamp Program
HANDLS	Healthy Aging in Neighborhoods of Diversity across the Life Span Study
HEI	Healthy Eating Index
NEAT	Nutrition and Economic Analysis Team
NEMS-S	Nutrition Environment Measures Survey in stores
NESR	Nutrition Evidence Systematic Review team
NGAD	Nutrition Guidance and Analysis Division
NHANES	National Health and Nutrition Examination Survey
NSLP	National School Lunch Program
PCS	Prospective Cohort Study
PICO	Population, Intervention, Comparator, Outcome
PIR	Poverty Index Ratio
RCT	Randomized Controlled Trial
ROB	Risk of bias
RTB	Ready-to-bake
RTC	Ready-to-cook

Abbreviation	Full name
RTE	Ready-to-eat
RTH	Read-to-heat
RTP	Ready-to-prepare
SBP	School Breakfast Program
SE	Standard Error
SES	Socioeconomic status
SNAP	Supplemental Nutrition Assistance Program
SOS III	Seattle Obesity Study III
SSI	Supplemental Security Income
TFP	Thrifty Food Plan
U.S.	United States
USDA	United States Department of Agriculture
WIC	Special Supplemental Nutrition Program for Women, Infants, and Children

Appendix 0-b: Risk of Bias for Nutrition Observational Studies (ROB-NObS) Tool*

Bias due to confounding

1.1 Is there potential for confounding of the effect of exposure in this study?

If N or PN: skip all remaining questions (1.2 to 1.8) and go to Bias due to confounding: Risk of bias judgement; the study can be considered to be at low risk of bias due to confounding and no further signalling questions need be considered.

If Y or PY, answer question 1.2 to determine whether there is a need to assess time-varying confounding.

1.2. If Y or PY to 1.1: Was the analysis based on splitting follow-up time according to exposure received?

If N or PN, skip 1.3 and answer questions 1.4 to 1.6, which relate to baseline confounding.

If Y or PY, go to question 1.3.

1.3. <u>If Y or PY to 1.2</u>: Were exposure discontinuations or switches likely to be related to factors that are prognostic for the outcome?

If N or PN, answer questions 1.4 to 1.6, which relate to baseline confounding only. Do not answer 1.7 and 1.8, which relate to both baseline and time-varying confounding.

If Y or PY, skip questions 1.4 to 1.6, and answer questions 1.7 and 1.8, which relate to both baseline confounding and time-varying confounding.

1.4. *If N or PN to 1.2 or 1.3:* Did the authors use an appropriate analysis method that adjusted for all the critically important confounding variables at baseline?

Go to 1.5

1.5. Were confounders that were adjusted for measured validly and reliably by the variables available in this study?

Go to 1.6

1.6. Did the authors avoid adjusting for post-exposure variables?

(Skip to Bias due to confounding: Risk of bias judgement)

Questions related to baseline and time-varying confounding

1.7. If Y or PY to 1.3: Did the authors use an appropriate analysis method that adjusted for all the critically important confounding variables, including baseline and time-varying confounding?

If N or PN to 1.7, skip to Bias due to confounding: Risk of bias judgement.

If Y or PY to 1.7, answer question 1.8.

1.8. <u>If Y or PY to 1.3 and Y or PY to 1.7</u>: Were confounders that were adjusted for measured validly and reliably by the variables available in this study?

Bias due to confounding: Risk of bias judgement

Low risk of bias (the study is comparable to a well-performed randomized trial with regard to this domain)	No confounding expected.
Moderate risk of bias (the study is sound for an observational study with regard to this domain but cannot be considered comparable to a well-performed randomized trial)	 (i) Confounding expected, all known important confounding domains appropriately measured and controlled for; and (ii) Reliability and validity of measurement of important domains were sufficient, such that we do not expect serious residual confounding.
Serious risk of bias (the study has some important problems)	 (i) At least one key confounder was not appropriately measured, or not controlled for; or (ii) Reliability or validity of measurement of a key confounder was low enough that we expect serious residual confounding.
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	 (i) Confounding is inherently not controllable; or (ii) The use of negative controls strongly suggests unmeasured confounding.
No information on which to base a judgement about risk of bias for this domain	No information on whether confounding might be present.

Bias in selection of participants into the study

2.1. Was selection of participants into the study or into the analysis based on participant characteristics observed after the start of exposure?

If N or PN, go to 2.4 (skip 2.2 and 2.3).

If Y or PY, go to 2.2 and 2.3.

2.2. If Y or PY to 2.1: Were the post-exposure variables that influenced selection of participants (into the study or analysis) associated with exposure?

Go to 2.3

2.3. If Y or PY to 2.1: Were the post-exposure variables that influenced selection of participants (into the study or analysis) associated with the outcome?

2.4. Do start of follow-up and start of exposure coincide for most participants?

If N or PN to 2.4, answer 2.5.

If Y or PY to 2.4, go to Bias in selection of participants into the study: Risk of bias judgement.

2.5 If Y or PY to 2.2 and 2.3, or N or PN to 2.4: Were adjustment techniques that were likely to correct for the presence of selection biases used?

Go to Bias in selection of participants into the study: Risk of bias judgement.

Bias in selection of participants into the study: Risk of bias judgement

Low risk of bias (the study is comparable to a well-performed randomized trial with regard to this domain)	 (i) All participants who would have been eligible for the target trial were included in the study; and (ii) For each participant, start of follow up and start of exposure coincided.
Moderate risk of bias (the study is sound for an observational study with regard to this domain but cannot be considered comparable to a well-performed randomized trial)	 (i) Selection into the study may have been related to exposure and outcome; and The authors used appropriate methods to adjust for the selection bias; or (ii) Start of follow up and start of exposure do not coincide for all participants; and (a) the proportion of participants for which this was the case was too low to induce important bias; or (b) the authors used appropriate methods to adjust for the selection bias; or (c) the review authors are confident that the rate (hazard) ratio for the effect of exposure remains constant over time.
Serious risk of bias (the study has some important problems)	 (i) Selection into the study was related (but not very strongly) to exposure and outcome; and This could not be adjusted for in analyses; or (ii) Start of follow up and start of exposure do not coincide; and A potentially important amount of follow-up time is missing from analyses; and The rate ratio is not constant over time.
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	 (i) Selection into the study was very strongly related to exposure and outcome; and This could not be adjusted for in analyses; Or (ii) A substantial amount of follow-up time is likely to be missing from analyses; and The rate ratio is not constant over time.
No information on which to base a judgement about risk of bias for this domain	No information is reported about selection of participants into the study or whether start of follow up and start of exposure coincide.

Bias in classification of exposures

- 3.1. Is the exposure that was assessed clearly defined?
- 3.2. Does the exposure that was assessed represent the exposure of interest?
- 3.3. Were the methods used to assess the exposure clearly described?

- 3.4. Were the methods used to measure the exposure valid and/or reliable?
- 3.5. Were the same methods used to assess the exposure status for all participants/groups?
- 3.6. Were the methods used to define exposure status for participants/groups clearly described?
- 3.7. Were the methods used to define exposure status for participants/groups likely to result in minimal random or systematic exposure misclassification?
- 3.8. Could classification of exposure status been affected by the presence of the outcome, knowledge of the outcome or risk of the outcome?

If Y or PY, there may be serious risk of bias.

Go to Bias in classification of exposures: Risk of bias judgement.

Bias in classification of exposures	
Low risk of bias (the study is comparable to a well-performed randomized trial with regard to this domain)	 (i) The exposure and the methods used to assess the exposure were well defined and represent the exposure of interest; and (ii) Methods were valid, reliable, the same across groups, and likely to result in minimal random or systematic exposure misclassification. and (iii) Exposure status was not affected by the presence of the outcome, knowledge of the outcome or risk of the outcome
Moderate risk of bias (the study is sound for a, observational study with regard to this domain but cannot be considered comparable to a well-performed randomized trial)	(i) The exposure and the methods used to assess the exposure are defined and represent the exposure of interest; and (ii) Methods were valid, reliable, the same across groups, and likely to result in minimal random or systematic exposure misclassification. or Exposure status was not affected by the presence of the outcome, knowledge of the outcome or risk of the outcome
Serious risk of bias (the study has some important problems)	 (i) Exposure status or the methods used to assess the exposure are not well defined or do not represent the exposure of interest; and (ii) Methods were not valid and reliable, the same across groups, or were likely to result in some degree of random or systematic exposure misclassification. or Exposure status was affected by the presence of the outcome, knowledge of the outcome or risk of the outcome
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	(i) Exposure status and the methods used to assess the exposure are not well defined or do not represent the exposure of interest; and (ii) Methods were not valid and reliable, were not the same across groups, and were likely to result in substantial random or systematic exposure misclassification. and (iii) Exposure status was affected by the presence of the outcome, knowledge of the outcome or risk of the outcome
No information on which to base a judgement about risk of bias for this domain	No definition of exposure or no explanation of the source of information about exposure status is reported.

Bias due to departures from intended exposures

- 4.1. Is there concern that changes in exposure status occurred among participants that were unbalanced across groups and likely to impact the outcome?
- 4.2. Were any critical co-exposures that occurred unbalanced between exposure groups and likely to impact the outcome?
- 4.3. If Y or PY to 4.1, or 4.2: Were adjustment techniques that are likely to correct for these issues (i.e., changes in exposure status and/or unbalanced co-exposures) used?

Go to Bias due to departures from intended exposures: Risk of bias judgement.

	minute a dispersion con a mana di mana jumigani anni	
Bias due to departures from intended exposures: Risk of bias judgement		
Low risk of bias (the study is comparable to a well-performed randomized trial with regard to this domain)	There were no changes in the exposure status that were likely to impact the outcome, and any important co-exposures were balanced across intervention groups.	
Moderate risk of bias (the study is sound for an observational study with regard to this domain but cannot be considered comparable to a well-performed randomized trial)	 (i) There were changes in exposures status <i>or</i> important co-exposures were not balanced across groups and (ii) the impact on the outcome is expected to be slight <i>or</i> measurement and/or adjustment techniques were used to correct for the issues 	
Serious risk of bias (the study has some important problems)	 (i) There were changes in exposure status or important co-exposures were not balanced across groups that were likely to impact the outcome, and (ii) no or inappropriate measurement and/or adjustment techniques were used to correct for the issues 	
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	 (i) There were substantial changes in exposures status, or important co-exposures were not balanced across groups, that were likely to impact the outcome, and (ii) no or inappropriate measurement and/or adjustment techniques were used to correct for the issues. 	
No information on which to base a judgement about risk of bias for this domain	No information is reported on whether there is deviation from the intended exposure.	

Bias due to missing data

- 5.1. Were there missing outcome data?
- 5.2. Were participants excluded due to missing data on exposure status?
- 5.3. Were participants excluded due to missing data on other variables (besides outcome data and exposure status) needed for the analysis?
- 5.4. If Y or PY to 5.1, 5.2 or 5.3: Are the proportion of participants and reasons for missing data similar across exposure groups?
- 5.5. If Y or PY to 5.1, 5.2 or 5.3: Were appropriate statistical methods used to account for missing data?

Go to Bias due to missing data: Risk of bias judgement

Blas due to missing data: Risk of blas judgement	
	(i) Data were reasonably complete;
comparable to a well-performed	or

randomized trial with regard to this domain)	(ii) Proportions of and reasons for missing participants were similar across exposure groups; or (iii) The analysis addressed missing data and is likely to have removed any risk of bias.
Moderate risk of bias (the study is sound for an observational study with regard to this domain but cannot be considered comparable to a well-performed randomized trial)	(i) Proportions of and reasons for missing participants differ slightly across exposure groups; and (ii) The analysis is unlikely to have removed the risk of bias arising from the missing data.
Serious risk of bias (the study has some important problems)	 (i) Proportions of missing participants differ substantially across exposures; or Reasons for missingness differ substantially across exposures; and (ii) The analysis is unlikely to have removed the risk of bias arising from the missing data; or Missing data were addressed inappropriately in the analysis; or The nature of the missing data means that the risk of bias cannot be removed through appropriate analysis.
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	(i) (Unusual) There were critical differences between exposures in participants with missing data; and (ii) Missing data were not, or could not, be addressed through appropriate analysis.
No information on which to base a judgement about risk of bias for this domain	No information is reported about missing data or the potential for data to be missing.

Bias in measurement of outcomes

- 6.1. Could the outcome measure have been influenced by knowledge of the exposure received?
- 6.2. Were outcome assessors aware of the exposure received by study participants?
- 6.3. Were the methods of outcome assessment the same across exposure groups?
- 6.4. Were any systematic errors during measurement of the outcome related to exposure received?

Go to Bias in measurement of outcomes: Risk of bias judgement			
Bias in measurement of outcomes:	Risk of bias judgement		
Low risk of bias (the study is comparable to a well-performed randomized trial with regard to this domain)	(i) The methods of outcome assessment were comparable across exposure groups; and (ii) The outcome measure was unlikely to be influenced by knowledge of the exposure received by study participants (i.e. is objective) or the outcome assessors were unaware of the exposure received by study participants;		

	and
	(iii) Any error in measuring the outcome is unrelated to exposure status.
Moderate risk of bias (the study is sound for an observational study with regard to this domain but	(i) The methods of outcome assessment were comparable across exposure groups; and
cannot be considered comparable to a well-performed randomized trial)	(ii) The outcome measure is only minimally influenced by knowledge of the exposure received by study participants;
	and (iii) Any error in measuring the outcome is only minimally related to exposure status.
Serious risk of bias (the study has some important problems)	(i) The methods of outcome assessment were not comparable across exposure groups;
	or (ii) The outcome measure was subjective (i.e. vulnerable to influence by knowledge of the exposure received by study participants); and
	The outcome was assessed by assessors aware of the exposure received by study participants;
	or
	(iii) Error in measuring the outcome was related to exposure status.
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	The methods of outcome assessment were so different that they cannot reasonably be compared across intervention groups.
No information on which to base a judgement about risk of bias for this domain	No information is reported about the methods of outcome assessment.

Bias in selection of reported result

- 7.1. Is the reported effect estimate likely to be selected on the basis of the results from multiple *outcome measurements* within the outcome domain?
- 7.2. Is the reported effect estimate likely to be selected on the basis of the results from multiple *analyses* of the exposure-outcome relationship?
- 7.3. Is the reported effect estimate likely to be selected on the basis of the results from different subgroups?

Go to Bias in selection of reported result: Risk of bias judgement

Go to Bias in selection of reported result: Risk of bias judgement		
Bias in selection of reported result: Risk of bias judgement		
Low risk of bias (the study is comparable to a well-performed randomized trial with regard to this domain)	There is clear evidence (usually through examination of a pre-registered protocol or statistical analysis plan) that all reported results correspond to all intended outcomes, analyses and sub-cohorts.	
Moderate risk of bias (the study is sound for an observational study with regard to this domain but cannot be considered comparable to	(i) The outcome measurements and analyses are consistent with an <i>a priori</i> plan; or are clearly defined and both internally and externally consistent; and	
a well-performed randomized trial)	(ii) There is no indication of selection of the reported analysis from among multiple analyses; and	
	(iii) There is no indication of selection of the cohort or subgroups for analysis and reporting on the basis of the results.	

Serious risk of bias (the study has some important problems)	 (i) Outcomes are defined in different ways in the methods and results sections, or in different publications of the study; or (ii) There is a high risk of selective reporting from among multiple analyses; or (iii) The cohort or subgroup is selected from a larger study for analysis and appears to be reported on the basis of the results.
Critical risk of bias (the study is too problematic to provide any useful evidence on the effects of intervention)	 (i) There is evidence or strong suspicion of selective reporting of results; and (ii) The unreported results are likely to be substantially different from the reported results.
No information on which to base a judgement about risk of bias for this domain.	There is too little information to make a judgement (for example if only an abstract is available for the study).

^{*}NESR created the RoB-NObs by making modifications to the ROBINS-I and a preliminary instrument designed to assess risk of bias in non- randomized studies of exposures.*,† These modifications were made to ensure that the tool was applicable to observational studies of food, nutrition, and public health.‡.§

^{*} Morgan, R.L., Thayer, K.A., Santesso, N., Holloway, A.C., Blain, R., Eftim, S.E., Goldstone, A.E., Ross, P., Guyatt, G., Schunemann, H.J., 2018a. Evaluation of the risk of bias in non-randomized studies of interventions (ROBINS-I) and the 'target experiment'concept in studies of exposures: rationale and preliminary instrument development. Environ. Int. 120, 382–387.

[†] Morgan RL, Thayer KA, Santesso N, Holloway AC, Blain R, Eftim SE, Goldstone AE, Ross P, Ansari M, Akl E, Filippini T, Hansell A, Meerpohl JJ, Mustafa RA, Verbeek J, Vinceti M, Whaley P, Schünemann HJ; GRADE Working Group. A risk of bias instrument for non-randomized studies of exposures: A users' guide to its application in the context of GRADE. Environ Int. 2019 Jan;122:168-184. doi: 10.1016/j.envint.2018.11.004. Epub 2018 Nov 22 PMID: 30473382

[‡] Hörnell A, Berg C, Forsum E, Larsson C, Sonestedt E, Åkesson A, Lachat C, Hawwash D, Kolsteren P, Byrnes G, De Keyzer W, Van Camp J, Cade JE, Greenwood DC, Slimani N, Cevallos M, Egger M, Huybrechts I, Wirfält E. Perspective: An Extension of the STROBE Statement for Observational Studies in Nutritional Epidemiology (STROBE-nut): Explanation and Elaboration. Adv Nutr. 2017;8(5):652-678. PMID: <u>28916567</u>

[§] Bero, Lisa & Chartres, Nicholas & Diong, Joanna & Fabbri, Alice & Ghersi, Davina & Lam, Juleen & Lau, Agnes & McDonald, Sally & Mintzes, Barbara & Sutton, Patrice & Turton, Jessica & Woodruff, Tracey. (2018). The risk of bias in observational studies of exposures (ROBINS-E) tool: Concerns arising from application to observational studies of exposures. Systematic Reviews. 7. 10.1186/s13643-018-0915-2.

Appendix 1-a: Literature search strategy for the rapid review on income and food prices

Database: PubMed

Vendor: National Library of Medicine Date of Search: February 8, 2021

Limits Used: Filters: Language English; Publication Dates 1995 - 2021

Total = 4,265

Search #	Concept	Search String	N
#1	Food/Beverages	"Food and Beverages" [Mesh] OR food* [tiab] OR vegetable* [tiab] OR fruit* [tiab] OR meat* [tiab] OR seafood* [tiab] OR poultry [tiab] OR beans [tiab] OR rice [tiab] OR legumes [tiab] OR cereal* [tiab] OR grain* [tiab] OR dairy [tiab] OR eggs [tiab] OR beverage* [tiab] OR milk [tiab] OR "Diet, Healthy" [Mesh] OR "healthy diet*" [tiab] OR "unhealthy diet*" [tiab]	1,376,771
#2	Price/Cost	"Costs and Cost Analysis"[Mesh] OR cost*[tiab] OR price*[tiab] OR affordab*[tiab] OR expense*[tiab] OR expenditure*[tiab] OR budget*[tiab] OR purchas*[tiab] OR cash[tiab] OR money[tiab] OR monetary[tiab] OR monies[tiab]	918,203
	Income/social economic factors	"Socioeconomic Factors" [Mesh] OR socioeconomic* [tiab] OR socioeconomic* [tiab] OR socio-economic* [tiab] OR "social factor*" [tiab] OR "social condition*" [tiab] OR poverty [tiab] OR "Residence Characteristics" [Mesh] OR "Vulnerable Populations" [Mesh] OR "vulnerable population*" [tiab] OR "underserved population*" [tiab] OR "licome" [Mesh] OR "licome" [Mesh] OR "race [Mesh] OR "Race Factors" [Mesh] OR "race factor*" [tiab] OR "Ethnic Groups" [Mesh] OR "ethnic group*" [tiab] OR "ethnic population*" [tiab] OR "Cross-Cultural Comparison" [Mesh] OR "Cross-Cultural Comparison" [Mesh] OR "Cultural Characteristics" [Mesh] OR "cultural Characteristics" [Mesh] OR "cultural piversity" [Mesh] OR "culturally diverse" [tiab] OR "Food Supply" [Mesh] OR "food desert*" [tiab] OR "food insecurit*" [tiab] OR "food environment*" [tiab] OR "food access" [tiab] OR "food cooperative*" [tiab] OR "food store*" [tiab] OR "food market*" [tiab] OR grocer* [tiab] OR supermarket* [tiab] OR "convenient store*" [tiab] OR "food outlet*" [tiab] OR "foor market*" [tiab] OR "food outlet*" [tiab] OR "foor market*" [tiab] OR "food outlet*" [tiab] OR "farmers market*" [tiab] OR "food outlet*" [tiab] OR "farmers market*" [tiab]	873,818
#3		#1 AND #2 AND #3	11,345
#4	Non-United States	#1 AND #2 AND #3 NOT ("Developing Countries" [Mesh] OR "developing countr*" OR "Under Developed Nation*" OR "low income countr*" OR "middle income countr*" OR "low-middle-income countr*" OR LMIC[tiab] OR "Europe" [Mesh] OR "Australia" [Mesh] OR "Asia" [Mesh] OR "Africa" [Mesh]	5,916

		OR "Mexico"[Mesh] OR "Islands"[Mesh] OR "Central America"[Mesh] OR "Latin America"[Mesh] OR "South America"[Mesh])	
#4	Publication Excludes	NOT (letter[ptyp] OR editorial[ptyp] OR comment[ptyp] OR news[ptyp] OR "Congress"[Publication Type] OR "Consensus Development Conference"[Publication Type] OR editorial[tiab] OR commentary[tiab] OR "conference abstract*"[tiab] OR "systematic review*"[ti] OR "meta-analysis"[ptyp] OR "meta-analysis"[ti] OR "Review"[Publication Type] OR "Systematic Review"[Publication Type] OR "Conference proceeding*"[tiab] OR "retracted publication"[ptyp] OR "retraction of publication"[ptyp] OR "retraction of publication"[tiab] OR "retraction notice"[ti] OR "retracted publication"[tiab] OR "retraction notice"[ti] OR corrigendum[tiab] OR errata[tiab] OR erratum[tiab] OR corrigendum[tiab] OR protocols[ti] OR "case report"[ti] OR "case series"[ti] OR "Case Reports" [Publication Type])	4,766
#5	Animal Excludes	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))	4,570
#6	Limits: Language/Dates	Filters: English, from 1995 - 2021	4,265

Database: Cochrane Central Register of Controlled Trials (CENTRAL)

Vendor: John Wiley & Sons, Inc. Date of Search: February 9, 2021

Limits Used: Filters: Trials; Publication Dates 1995 - 2021

Total = 847

Search #	Concept	Search String	N
#1	Food/Beverages	[mh "Food and Beverages"] OR food* OR vegetable* OR fruit* OR meat* OR seafood* OR poultry OR beans OR rice OR legumes OR cereal* OR grain* OR dairy OR eggs OR beverage* OR milk OR [mh "Diet, Healthy"] OR "healthy diet*" OR "unhealthy diet*"	96,092
#2	Price/Cost	[mh "Costs and Cost Analysis"] OR cost* OR price* OR affordab* OR expense* OR expenditure* OR budget* OR purchas* OR cash OR money OR monetary OR monies	99,584
#3	Income/social economic factors	[mh "Socioeconomic Factors"] OR socioeconomic* OR socio-economic* OR "social factor*" OR "social condition*" OR poverty OR [mh "Residence Characteristics"] OR [mh "Vulnerable Populations"] OR "vulnerable population*" OR "underserved population*" OR "disadvantaged population*" OR [mh "Income"] OR income* OR [mh "Race Factors"] OR "race factor*" OR [mh "Ethnic Groups"] OR "ethnic group*" OR "ethnic population*" OR [mh "Cross-Cultural Comparison"] OR "cross-cultural" OR transcultural OR [mh "Cultural Characteristics"] OR	32,995

		"cultural characteristic*" OR [mh "Cultural Diversity"] OR "culturally diverse" OR [mh "Food Supply"] OR "food desert*" OR "food insecurit*" OR "food environment*" OR "food access" OR "corner store*" OR bodega* OR "food cooperative*" OR "food store*" OR "food market*" OR grocer* OR supermarket* OR "convenient store*" OR "food outlet*" OR "farmers market*"	
#4		#1 AND #2 AND #3	1,879
#5	Non-United States	[mh "Developing Countries"] OR "developing countr*" OR "under developed nation*" OR "low income countr*" OR "middle income countr*" OR "low-middle- income countr*" OR LMIC OR [mh "Europe"] OR [mh "Australia"] OR [mh "Asia"] OR [mh "Africa"] OR [mh "Mexico"] OR [mh "Islands"] OR [mh "Central America"] OR [mh "Latin America"] OR [mh "South America"]	5,916
#6		#4 NOT #5" with Publication Year from 1995 to 2021, in Trials (Word variations have been searched)	847

Database: Business Source Premier

Vendor: EBSCO

Date of Search: February 9, 2021

Limits Used: Filters: Language English, Peer Reviewed, Academic Journal; Publication, Geographic United States, Dates

1995 - 2021 Total = 471

Search #	Concept	Search String	N
#S1	Food/Beverages	(DE "BEVERAGE consumption") OR (DE "FOOD consumption forecasting") OR (DE "FOOD consumption statistics") OR food* OR vegetable* OR fruit* OR meat* OR seafood* OR poultry OR beans OR rice OR legumes OR cereal* OR grain* OR dairy OR eggs OR beverage* OR milk OR "healthy diet*" OR "unhealthy diet*" Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 19950101-20211231; Publication Type: Academic Journal; Document Type: Article	115,0411
#S2	Price/Cost	(DE "FOOD prices") OR cost* OR price* OR affordab* OR expense* OR expenditure* OR budget* OR purchas* OR cash OR money OR monetary OR monies Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 19950101-20211231; Publication Type: Academic Journal; Document Type: Article	526,897
#S3	Income/social economic factors	(DE "SOCIOECONOMIC factors") OR socioeconomic* OR socio-economic* OR "social factor*" OR "social condition*" OR (DE "POVERTY") OR poverty OR "vulnerable population*" OR	200,523

		"underserved population*" OR "disadvantaged population*" OR (DE "INCOME") OR income* OR "race factor*" OR (DE "ECONOMIC conditions of ethnic groups") OR "ethnic group*" OR "ethnic population*" OR "cross-cultural" OR transcultural OR "cultural characteristic*" OR "culturally diverse" OR (DE "FOOD supply") OR "food desert*" OR "food insecurit*" OR "food environment*" OR "food access" OR "corner store*" OR bodega* OR "food cooperative*" OR "food store*" OR "food market*" OR grocer* OR supermarket* OR "convenient store*" OR "food outlet*" OR "farmers market*" Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 19950101-20211231; Publication Type: Academic Journal; Document Type: Article	
#S3		S1 AND S2 AND S3	6,977
#S4	Non-United States	S1 AND S2 AND S3 Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 19950101-20211231; Publication Type: Academic Journal; Document Type: Article Geographic: - united states	471

Database: Web of Science: Core Collection

Vendor: Clarivate Analytics
Date of Search: February 9, 2021
Limits Used: Filters: Language English; Publication Dates 1995 - 2021

Total = 4,040

Search #	Concept	Search String	N
#1	Food & Beverages	(TS=(food* OR vegetable* OR fruit* OR meat* OR seafood* OR poultry OR beans OR rice OR legumes OR cereal* OR grain* OR dairy OR eggs OR beverage* OR milk OR "healthy diet*" OR "unhealthy diet*"))	2,246,131
#2	Price/Cost	(TS=(cost* OR price* OR affordab* OR expense* OR expenditure* OR budget* OR purchas* OR cash OR money OR monetary OR monies))	1,902,030
#3	Income/social economic factors	(TS=(socioeconomic* OR socio-economic* OR "social factor*" OR "social condition*" OR poverty OR "residence characteristics" OR "vulnerable population*" OR "underserved population*" OR "disadvantaged population*" OR income* OR "race factor*" OR "ethnic group*" OR "ethnic population*" OR "cross-cultural" OR transcultural OR "cultural characteristic*" OR "culturally diverse" OR "food desert*" OR "food insecurit*" OR "food environment*" OR "food access" OR "corner store*" OR bodega* OR "food cooperative*" OR "food store*" OR "food market*" OR grocer* OR supermarket* OR "convenient store*" OR "food outlet*" OR "farmers market*")	562,183
#4		#1 AND #2 AND #3	17,069
#5	Non-United States	CU=("developing countr*" OR "under developed nation*" OR "lo w income countr*" OR "middle income	2,281,865

		countr*" OR "low-middle income countr*" OR LMIC OR Europe OR Australia OR Asia OR Africa OR Mexico OR Isl ands OR "Central America" OR "Latin America" OR "South Am erica")	
#6		#4 NOT #5	15,059
#7	Publication Excludes	TS=(editorial OR commentary OR "conference abstract*" OR "c onference proceeding*"[tiab] OR "retraction of publication" OR "retracted publication" OR corrigenda[tiab] OR corrigendum[tiab] OR errata OR erratum OR "case reports") OR TI=("systematic review*" OR "meta-analysis" OR "meta analyses" OR protocol OR protocols OR "retraction notice" OR "case report" OR "case series")	731,825
#8	Language/Dates	#6 NOT #7 AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article) Refined by: COUNTRIES/REGIONS: (USA) Indexes=SCI-EXPANDED, SSCI Timespan=1995-2021	4040

Grey literature Search

Database: Google Scholar

(Food AND beverages OR "food basket" OR groceries) (Price OR cost OR expenditure OR budget OR money OR "exact price index") AND (Income OR Poverty OR socioeconomic OR neighborhood OR city OR county)

Limits:

Date Searched: 4/26/2021 Results: 130, limited to 13 pages

Database: Google

site:.gov pdf AND (Food AND beverages OR "food basket" OR groceries) (Price OR cost OR expenditure OR budget OR money OR "exact price index") AND (Income OR Poverty OR socioeconomic OR neighborhood OR city OR county)

Limits:

Date Searched: 4/26/2021 Results: 30, limited to 3 pages

Database: AgEcon

Search A

Any of the words: food beverage basket grocer*

AND

Any of the words: cost price

AND

Any of the words: income

Limits:

Date Searched: 4/27/2021 Results: 100, limited to 10 pages

Search B

Any of the words: food beverage basket grocer*

AND

Any of the words: cost price

AND

Any of the words: neighborhood

Limits:

Date Searched: 4/27/2021 Results: 40, limited to 4 pages

Search C

Any of the words: food beverage basket grocer*

AND

Any of the words: cost price

AND

Any of the words: poverty

Limits:

Date Searched: 4/27/2021 Results: 110, limited to 11 pages

Search D

Any of the words: food beverage basket grocer*

AND

Any of the words: cost price

AND

Any of the words: socioeconomic

Limits:

Date Searched: 4/27/2021 Results: 60, limited to 6 pages

Appendix 1-b: Excluded articles for the rapid review on income and food prices

The following table lists the articles excluded after full-text screening for this rapid review question. At least 1 reason for exclusion is provided for each article, though this may not reflect all possible reasons. Information about articles excluded after title and abstract screening is available upon request.

	Citation	Reason for exclusion
1.	CONSUMER EXPENDITURES -2019. 2020.	Outcome
2.	Vermont Basic Needs Budgets and Livable Wage. 2021.	Study Design
3.	LONG-TERM BENEFITS OF THE SUPPLEMENTAL NUTRITION ASSISTANCE PROGRAM. 2015.	Outcome
4.	Milwaukee Fresh Food Access Report. 2019. 86.	Outcome
5.	USDA Food Plans: Cost of Food Reports (monthly reports) USDA-FNS. 2021.	Intervention/Exposure
6.	NC DHHS: Food and Nutrition Services Food Stamps. 2021.	Study Design
7.	Ollinger, M, Guthrie,. Volume of Purchases and Regional Location Have Strong Effects on Food Costs for School Meals. 2019. April 2019. doi:10.22004/ag.econ.302701.	Intervention/Exposure
8.	Aaron, GJ, Keim, NL, Drewnowski, A, Townsend, MS. Estimating dietary costs of low-income women in California: a comparison of 2 approaches. Am J Clin Nutr. 2013. 97:835-41. doi:10.3945/ajcn.112.044453.	Intervention/Exposure
9.	Aggarwal, A, Cook, AJ, Jiao, J, Seguin, RA, Vernez Moudon, A, Hurvitz, PM, Drewnowski, A. Access to supermarkets and fruit and vegetable consumption. Am J Public Health. 2014. 104:917-23. doi:10.2105/ajph.2013.301763.	Outcome
10.	Aggarwal, A, Monsivais, P, Cook, AJ, Drewnowski, A. Does diet cost mediate the relation between socioeconomic position and diet quality? Eur J Clin Nutr. 2011. 65:1059-66. doi:10.1038/ejcn.2011.72.	Outcome
11.	Aggarwal, A, Monsivais, P, Cook, AJ, Drewnowski, A. Positive attitude toward healthy eating predicts higher diet quality at all cost levels of supermarkets. J Acad Nutr Diet. 2014. 114:266-72. doi:10.1016/j.jand.2013.06.006.	Outcome
12.	Aggarwal, A, Monsivais, P, Drewnowski, A. Nutrient intakes linked to better health outcomes are associated with higher diet costs in the US. PLoS One. 2012. 7:e37533. doi:10.1371/journal.pone.0037533.	Outcome
13.	Aggarwal, A, Rehm, CD, Monsivais, P, Drewnowski, A. Importance of taste, nutrition, cost and convenience in relation to diet quality: Evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007-2010. Prev Med. 2016. 90:184-92. doi:10.1016/j.ypmed.2016.06.030.	Intervention/Exposure
14.	Alemu, R, Block, SA, Headey, D, Bai, Y, Masters, WA. Why are nutritious foods so expensive? Economic development and the cost of nutritious diets. 2018. 32. doi:10.22004/ag.econ.281163.	Country

		COD/(1 COd 1 lans (tapla (to
15.	Allcott, H, Diamond, R, Dubé, J-P, Handbury, J, Rahko vs.ky, I, Schnell, M. Food Deserts and the Causes of Nutritional Inequality. Quarterly Journal of Economics. 2019. 134:1793-1844. doi:10.1093/qje/qjz015.	Intervention/Exposure
16.	Alston, JM, Pardey, PG. Agricultural R&D, Food Prices, Poverty and Malnutrition Redux. 2014. 45. doi:10.22004/ag.econ.162413.	Study Design
17.	Anderson, K, Cockburn, J, Martin, W. Agricultural price distortions, inequality, and poverty. 2010.	Outcome
18.	Andrews, M, Kantar, LS, Lino, M, Ripplinger, D. Using the USDA's Thrifty Food Plan to assess food availability and affordability. 24. 2001. 45-53.	Comparator
19.	Andreyeva, T, Luedicke, J, Middleton, AE, Long, MW, Schwartz, MB. Positive influence of the revised Special Supplemental Nutrition Program for Women, Infants, and Children food packages on access to healthy foods. J Acad Nutr Diet. 2012. 112:850-8. doi:10.1016/j.jand.2012.02.019.	Intervention/Exposure
20.	Anekwe, TD, Rahko vs.ky, I. The association between food prices and the blood glucose level of US adults with type 2 diabetes. Am J Public Health. 2014. 104:678-85. doi:10.2105/ajph.2013.301661.	Intervention/Exposure
21.	Appelhans, BM, Milliron, BJ, Woolf, K, Johnson, TJ, Pagoto, SL, Schneider, KL, Whited, MC, Ventrelle, JC. Socioeconomic status, energy cost, and nutrient content of supermarket food purchases. Am J Prev Med. 2012. 42:398-402. doi:10.1016/j.amepre.2011.12.007.	Outcome
22.	Ard, JD, Fitzpatrick, S, Desmond, RA, Sutton, BS, Pisu, M, Allison, DB, Franklin, F, Baskin, ML. The impact of cost on the availability of fruits and vegetables in the homes of schoolchildren in Birmingham, Alabama. Am J Public Health. 2007. 97:367-72. doi:10.2105/ajph.2005.080655.	Intervention/Exposure
23.	Askelson, NM, Meier, C, Baquero, B, Friberg, J, Montgomery, D, Hradek, C. Understanding the Process of Prioritizing Fruit and Vegetable Purchases in Families With Low Incomes: "A Peach May Not Fill You Up as Much as Hamburger". Health Educ Behav. 2018. 45:817-823. doi:10.1177/1090198117752790.	Outcome
24.	Basu, S, Wimer, C, Seligman, H. Moderation of the Relation of County-Level Cost of Living to Nutrition by the Supplemental Nutrition Assistance Program. Am J Public Health. 2016. 106:2064-2070. doi:10.2105/ajph.2016.303439.	Intervention/Exposure
25.	Beheshti, R, Igusa, T, Jones-Smith, J. Simulated Models Suggest That Price per Calorie Is the Dominant Price Metric That Low-Income Individuals Use for Food Decision Making. J Nutr. 2016. 146:2304-2311. doi:10.3945/jn.116.235952.	Outcome
26.	Berkowitz, SA, Basu, S, Meigs, JB, Seligman, HK. Food Insecurity and Health Care Expenditures in the United States, 2011-2013. Health Serv Res. 2018. 53:1600-1620. doi:10.1111/1475-6773.12730.	Outcome
27.	Bertoni, AG, Foy, CG, Hunter, JC, Quandt, SA, Vitolins, MZ, Whitt-Glover, MC. A multilevel assessment of barriers to adoption of Dietary Approaches to Stop Hypertension (DASH) among African Americans of low socioeconomic status. J Health Care Poor Underserved. 2011. 22:1205-20. doi:10.1353/hpu.2011.0142.	Comparator

Zonderman, AB. Monetary Value of Diet Is Associated with Dietary Quality and Nutrient Adequacy among Urban Adults, Differentially by Sex, Race and Poverty Status. PLoS One. 2015. 10:e0140905. doi:10.1371/journal.pone.0140905. Beydoun, MA, Nicodo, A, Fanelli-Kuczmarski, MT, Maldonado, AI, Beydoun, HA, Popkin, BM, Evans, MK, Zonderman, AB. Longitudinal Associations between Monetary Value of the Diet, DASH Diet Score and the Allostatic Load among Middle-Aged Urban Adults. Nutrients. 2019. 11:doi:10.3390/nu11102360. Blecher, E, Liber, AC, Drope, JM, Nguyen, B, Stoklosa, M. Global Trends in the Affordability of Sugar-Sweetened Beverages, 1990-2016. Preventing Chronic Disease. 2017. 14:doi:10.15888/pcd14.160406. Blisard, N, Stewart, H, Jolliffe, D. Low-income households' expenditures on fruits and vegetables. 2004. Blisard, N, Stewart, H. How Low-income households' expenditures on fruits and vegetables. 2004. Blisard, N, Stewart, H. How Low-income Households Allocate Their Food Budget Relative to the Cost of the Thriffy Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. Blisard, N, Stewart, H. Food Spending in Armerican Households, 2003-04. 2007. 108. Comparator Cost of the Thriffy Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. Blistein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. Blittenhal, RN. Cohen, DA, Fartley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. Beehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland,			002/11/00a / Iailo / Iapia / I
Evans, MK, Zonderman, AB. Longitudinal Associations between Monetary Value of the Diet, DASH Diet Score and the Allostatic Load among Middle-Aged Urban Adults. Nutrients. 2019. 11:doi:10.3390/nu11102360. 30. Blecher, E, Liber, AC, Drope, JM, Nguyen, B, Stoklosa, M. Global Trends in the Affordability of Sugar-Sweetened Beverages, 1990-2016. Preventing Chronic Disease. 2017. 14:doi:10.5888/pcd14.160406. 31. Blisard, N, Stewart, H, Jolliffe, D. Low-income households' expenditures on fruits and vegetables. 2004. 32. Blisard, N, Smallwood, D, Lutz, S. Food Cost Indexes for Low-Income Households and the General Population. 1999. 29. doi:10.22004/ag.econ.156813. 33. Blisard, N, Stewart, H. How Low-Income Households Allocate Their Food Budget Relative to the Comparator Cost of the Thrifty Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. 34. Blisard, N, Stewart, H. Food Spending in American Households, 2003-04. 2007. 108. Comparator doi:10.22004/ag.econ.59033. 35. Blitstein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. 36. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. 37. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. 38. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.1016/j.healthplace.2013.07.008. 40. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of he	28.	Zonderman, AB. Monetary Value of Diet Is Associated with Dietary Quality and Nutrient Adequacy among Urban Adults, Differentially by Sex, Race and Poverty Status. PLoS One.	Intervention/Exposure
Sugar-Sweetened Beverages, 1990-2016. Preventing Chronic Disease. 2017. 14:doi:10.5888/pcd14.160406. 31. Blisard, N, Stewart, H, Jolliffe, D. Low-income households' expenditures on fruits and vegetables. 2004. 32. Blisard, N, Smallwood, D, Lutz, S. Food Cost Indexes for Low-Income Households and the General Population. 1999. 29. doi:10.22004/ag.econ.156813. 33. Blisard, N, Stewart, H. How Low-Income Households Allocate Their Food Budget Relative to the Cost of the Thrifty Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. 34. Blisard, N, Stewart, H. Food Spending in American Households, 2003-04. 2007. 108. Comparator doi:10.22004/ag.econ.59033. 35. Blitstein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. 36. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1017/s11524-008-9255-1. 37. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. 38. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.15888/pcd12.140542. 39. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. 40. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.15304/jafscd.2013.041.011.	29.	Evans, MK, Zonderman, AB. Longitudinal Associations between Monetary Value of the Diet, DASH Diet Score and the Allostatic Load among Middle-Aged Urban Adults. Nutrients. 2019.	Outcome
vegetables. 2004. Blisard, N, Smallwood, D, Lutz, S. Food Cost Indexes for Low-Income Households and the General Population. 1999. 29. doi:10.22004/ag.econ.156813. Blisard, N, Stewart, H. How Low-Income Households Allocate Their Food Budget Relative to the Cost of the Thrifty Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. Blisard, N, Stewart, H. Food Spending in American Households, 2003-04. 2007. 108. Comparator doi:10.22004/ag.econ.59033. Blistein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011.	30.	Sugar-Sweetened Beverages, 1990-2016. Preventing Chronic Disease. 2017.	Comparator
General Population. 1999. 29. doi:10.22004/ag.econ.156813. 33. Blisard, N, Stewart, H. How Low-Income Households Allocate Their Food Budget Relative to the Cost of the Thrifty Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. 34. Blisard, N, Stewart, H. Food Spending in American Households, 2003-04. 2007. 108. Comparator doi:10.22004/ag.econ.59033. 35. Blitstein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. 36. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. 37. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. 38. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. 39. Breyr, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. 40. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011.	31.		Other Exclude
Cost of the Thrifty Food Plan. 2006. 29. doi:10.22004/ag.econ.7239. 34. Blisard, N, Stewart, H. Food Spending in American Households, 2003-04. 2007. 108. Comparator doi:10.22004/ag.econ.59033. 35. Blitstein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. 36. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. 37. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. 38. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. 39. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. 40. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011.	32.		Intervention/Exposure
 doi:10.22004/ag.econ.59033. Blitstein, JL, Snider, J, Evans, WD. Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and Intervention/Exposure 	33.		Comparator
associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012. 15:1124-9. doi:10.1017/s1368980012000523. 36. Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. 37. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. 38. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. 39. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. 40. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011.	34.		Comparator
 Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern Louisiana. J Urban Health. 2008. 85:191-205. doi:10.1007/s11524-008-9255-1. Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and Intervention/Exposure 	35.	associated with greater consumption of fruits and vegetables. Public Health Nutr. 2012.	Outcome
 Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806. doi:10.1017/s136898001800407x. Breck, A, Kiszko, KM, Abrams, C, Elbel, B. Spending at mobile fruit and vegetable carts and using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and 	36.	Bluthenthal, RN, Cohen, DA, Farley, TA, Scribner, R, Beighley, C, Schonlau, M, Robinson, PL. Alcohol availability and neighborhood characteristics in Los Angeles, California and southern	Outcome
using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87. doi:10.5888/pcd12.140542. 39. Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. 40. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011. 41. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and Intervention/Exposure	37.	Boehm, R, Ver Ploeg, M, Wilde, PE, Cash, SB. Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806.	Outcome
 Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008. Brinkley, C, Chrisinger, B, Hillier, A. Tradition of healthy food access in low-income neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and Intervention/Exposure 	38.	using SNAP benefits to pay, Bronx, New York, 2013 and 2014. Prev Chronic Dis. 2015. 12:E87.	Outcome
neighborhoods: Price and variety of curbside produce vending compared to conventional retailers. J Agric Food Syst Community Dev. 2013. 4:155-169. doi:10.5304/jafscd.2013.041.011. 41. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and Intervention/Exposure		Breyer, B, Voss-Andreae, A. Food mirages: geographic and economic barriers to healthful food access in Portland, Oregon. Health Place. 2013. 24:131-9. doi:10.1016/j.healthplace.2013.07.008.	·
41. Bronchetti, ET, Christensen, G, Hoynes, HW. Local food prices, SNAP purchasing power, and Intervention/Exposure	40.	neighborhoods: Price and variety of curbside produce vending compared to conventional	Intervention/Exposure
	41.		Intervention/Exposure

42.	Brown, C. Consumers' preferences for locally produced food: A study in southeast Missouri.	Comparator
	American Journal of Alternative Agriculture. 2003. 18:213-224. doi:10.1079/ajaa200353.	·
43.	Budd, N, Cuccia, A, Jeffries, JK, Prasad, D, Frick, KD, Powell, L, Katz, FA, Gittelsohn, J. B'More Healthy: Retail Rewardsdesign of a multi-level communications and pricing intervention to improve the food environment in Baltimore City. BMC Public Health. 2015. 15:283. doi:10.1186/s12889-015-1616-6.	Study Design
44.	Burns, C, Cook, K, Mavoa, H. Role of expendable income and price in food choice by low income families. Appetite. 2013. 71:209-17. doi:10.1016/j.appet.2013.08.018.	Country
45.	Buszkiewicz, J, House, C, Aggarwal, A, Long, M, Drewnowski, A, Otten, JJ. The Impact of a City-Level Minimum Wage Policy on Supermarket Food Prices by Food Quality Metrics: A Two-Year Follow Up Study. Int J Environ Res Public Health. 2019. 16:doi:10.3390/ijerph16010102.	Intervention/Exposure
46.	Byker Shanks, C, Ahmed, S, Smith, T, Houghtaling, B, Jenkins, M, Margetts, M, Schultz, D, Stephens, L. Availability, Price, and Quality of Fruits and Vegetables in 12 Rural Montana Counties, 2014. Prev Chronic Dis. 2015. 12:E128. doi:10.5888/pcd12.150158.	Outcome
47.	Cakir, M, Beatty, TKM, Boland, MA, Park, TA, Snyder, S, Wang, YH. SPATIAL AND TEMPORAL VARIATION IN THE VALUE OF THE WOMEN, INFANTS, AND CHILDREN PROGRAM'S FRUIT AND VEGETABLE VOUCHER. American Journal of Agricultural Economics. 2018. 100:691-706. doi:10.1093/ajae/aay002.	Intervention/Exposure
48.	Canto, Amber, Brown, LE, Deller, SC. Rural Poverty, Food Access, and Public Health Outcomes. 2014. 29:5. doi:10.22004/ag.econ.182113.	Comparator
49.	Carlson, A, Page, E, Mentzer RM. USDA's Purchase to Plate Price Tool Estimates Food Costs for National Food Intake Data. 2020. 2020:doi:10.22004/ag.econ.307281.	Comparator
50.	Carnahan, LR, Zimmermann, K, Peacock, NR. What Rural Women Want the Public Health Community to Know About Access to Healthful Food: A Qualitative Study, 2011. Prev Chronic Dis. 2016. 13:E57. doi:10.5888/pcd13.150583.	Intervention/Exposure
51.	Caspi, CE, Pelletier, JE, Harnack, LJ, Erickson, DJ, Lenk, K, Laska, MN. Pricing of Staple Foods at Supermarkets versus Small Food Stores. Int J Environ Res Public Health. 2017. 14:doi:10.3390/ijerph14080915.	Comparator
52.	Caswell, JA, Yaktine, AL, On Examination of the Adequacy of Food Resources, Snap Allotments, Committee, Board, Food, Nutrition, On National Statistics, Committee, Of Medicine, Institute, Council, National Research. Individual, Household, and Environmental Factors Affecting Food Choices and Access. Supplemental Nutrition Assistance Program: Examining the Evidence to Define Benefit Adequacy. 2013.	Study Design
53.	Cavanaugh, E, Mallya, G, Brensinger, C, Tierney, A, Glanz, K. Nutrition environments in corner stores in Philadelphia. Prev Med. 2013. 56:149-51. doi:10.1016/j.ypmed.2012.12.007.	Comparator
54.	Cerin, E, Frank, LD, Sallis, JF, Saelens, BE, Conway, TL, Chapman, JE, Glanz, K. From neighborhood design and food options to residents' weight status. Appetite. 2011. 56:693-703. doi:10.1016/j.appet.2011.02.006.	Intervention/Exposure
55.	Chea, M, Mobley, AR. Factors Associated with Identification and Consumption of Whole-Grain Foods in a Low-Income Population. Curr Dev Nutr. 2019. 3:nzz064. doi:10.1093/cdn/nzz064.	Intervention/Exposure

56.	Chen, D, Jaenicke, EC, Volpe, RJ. Food Environments and Obesity: Household Diet Expenditure Versus Food Deserts. Am J Public Health. 2016. 106:881-8. doi:10.2105/ajph.2016.303048.	Outcome
57.	Choi, HJ, Wohlgenant, MK, Zheng, XY. Household-Level Welfare Effects of Organic Milk Introduction. American Journal of Agricultural Economics. 2013. 95:1009-1028. doi:10.1093/ajae/aat021.	Outcome
58.	Chouinard, HH, Davis, DE, LaFrance, JT, Perloff, JM. Milk Marketing Order Winners and Losers. Applied Economic Perspectives and Policy. 2010. 32:59-76. doi:10.1093/aepp/ppp002.	Intervention/Exposure
59.	Clauson, AL. Despite Higher Food Prices, Percent of U.S. Income Spent on Food Remains Constant. 2008. 1. doi:10.22004/ag.econ.124033.	Comparator
60.	Cliff, BQ, Townsend, T, Wolfson, JA. Examining Household Changes in Produce Purchases Among New Parents. J Nutr Educ Behav. 2019. 51:798-805. doi:10.1016/j.jneb.2019.04.010.	Outcome
61.	Connell, CL, Zoellner, JM, Yadrick, MK, Chekuri, SC, Crook, LB, Bogle, ML. Energy density, nutrient adequacy, and cost per serving can provide insight into food choices in the lower Mississippi Delta. J Nutr Educ Behav. 2012. 44:148-53. doi:10.1016/j.jneb.2011.02.003.	Intervention/Exposure
62.	Coughenour, C, Bungum, TJ, Regalado, MN. Healthy Food Options at Dollar Discount Stores Are Equivalent in Quality and Lower in Price Compared to Grocery Stores: An Examination in Las Vegas, NV. Int J Environ Res Public Health. 2018. 15:doi:10.3390/ijerph15122773.	Intervention/Exposure
63.	Crandall, PG, Seideman, S, Ricke, SC, O'Bryan, CA, Fanatico, AF, Rainey, R. Organic poultry: Consumer perceptions, opportunities, and regulatory issues. Journal of Applied Poultry Research. 2009. 18:795-802. doi:10.3382/japr.2009-00025.	Study Design
64.	Damon, AL, King, RP, Leibtag, E. First of the month effect: Does it apply across food retail channels? Food Policy. 2013. 41:18-27. doi:10.1016/j.foodpol.2013.04.005.	Outcome
65.	Daniel, C. Is healthy eating too expensive?: How low-income parents evaluate the cost of food. Soc Sci Med. 2020. 248:112823. doi:10.1016/j.socscimed.2020.112823.	Comparator
66.	Darmon, N, Lacroix, A, Muller, L, Ruffieux, B. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int J Behav Nutr Phys Act. 2014. 11:66. doi:10.1186/1479-5868-11-66.	Country
67.	Darmon, Nicole, Lacroix, Anne, Muller, Laurent, Ruffieux, Bernard. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. International Journal of Behavioral Nutrition and Physical Activity. 2014. 11:1-12.	Country
68.	Davis, CG, Blayney, DP, Yen, ST, Cooper, J. An analysis of at-home demand for ice cream in the United States. J Dairy Sci. 2009. 92:6210-6. doi:10.3168/jds.2009-2536.	Outcome
69.	Davis, DE. Prices Dominate Interstate Variation in WIC Food Costs. 2005. 1. doi:10.22004/ag.econ.130597.	Comparator
70.	DiSantis, KI, Grier, SA, Oakes, JM, Kumanyika, SK. Food prices and food shopping decisions of black women. Appetite. 2014. 77:104-12. doi:10.1016/j.appet.2014.02.016.	Outcome
71.	DiSantis, KI, Grier, SA, Odoms-Young, A, Baskin, ML, Carter-Edwards, L, Young, DR, Lassiter, V, Kumanyika, SK. What "price" means when buying food: insights from a multisite qualitative	Comparator

	study with Black Americans. Am J Public Health. 2013. 103:516-22. doi:10.2105/ajph.2012.301149.	
72.	Dong, D, Lin, B-H. Price Reductions Have Little Effect on Fruits and Vegetable Consumption by Low-Income Americans. 2009. 1. doi:10.22004/ag.econ.124213.	Comparator
73.	Dong, D, Lin, B-H. Fruit and Vegetable Consumption by Low-Income Americans: Would a Price Reduction Make a Difference? 2009. 17. doi:10.22004/ag.econ.55835.	Outcome
74.	Drewnowski, A. Nutrition Economics: How to Eat Better for Less. J Nutr Sci Vitaminol (Tokyo). 2015. 61 Suppl:S69-71. doi:10.3177/jnsv.61.S69.	Study Design
75.	Drewnowski, A, Aggarwal, A, Hurvitz, PM, Monsivais, P, Moudon, AV. Obesity and supermarket access: proximity or price? Am J Public Health. 2012. 102:e74-80. doi:10.2105/ajph.2012.300660.	Other Exclude
76.	Drewnowski, A, Moudon, AV, Jiao, J, Aggarwal, A, Charreire, H, Chaix, B. Food environment and socioeconomic status influence obesity rates in Seattle and in Paris. International Journal of Obesity. 2014. 38:306-314. doi:10.1038/ijo.2013.97.	Outcome
77.	Drewnowski, Adam, Darmon, Nicole. Food choices and diet costs: an economic analysis. The Journal of nutrition. 2005. 135:900-904.	Study Design
78.	Drichoutis, AC, Lazaridis, Panagiotis. What Influences Tastes? An Analysis of the Determinants of Consumers' Demand for Tastes in Food. 2009. 09:15. doi:10.22004/ag.econ.93803.	Comparator
79.	Elleby, C. Poverty and Price Transmission. 2014. 14. doi:10.22004/ag.econ.182722.	Comparator
80.	Emond, JA, Madanat, HN, Ayala, GX. Do Latino and non-Latino grocery stores differ in the availability and affordability of healthy food items in a low-income, metropolitan region? Public Health Nutr. 2012. 15:360-9. doi:10.1017/s1368980011001169.	Intervention/Exposure
81.	Ethan, D, Basch, CH, Rajan, S, Samuel, L, Hammond, RN. A comparison of the nutritional quality of food products advertised in grocery store circulars of high- versus low-income New York City zip codes. Int J Environ Res Public Health. 2013. 11:537-47. doi:10.3390/ijerph110100537.	Intervention/Exposure
82.	Ethan, D, Samuel, L, Basch, CH. An analysis of Bronx-based online grocery store circulars for nutritional content of food and beverage products. J Community Health. 2013. 38:521-8. doi:10.1007/s10900-012-9643-z.	Outcome
83.	Fan, LL, Baylis, K, Gundersen, C, Ver Ploeg, M. Does a nutritious diet cost more in food deserts? Agricultural Economics. 2018. 49:587-597. doi:10.1111/agec.12444.	Outcome
84.	Fielding-Singh, P, Wang, J. Table talk: How mothers and adolescents across socioeconomic status discuss food. Soc Sci Med. 2017. 187:49-57. doi:10.1016/j.socscimed.2017.06.016.	Outcome
85.	Finke, MS, Chern, WS, Fox, JJ. Do the Urban Poor Pay More for Food? Issues in Measurement. Advancing the Consumer Interest. 1997. 9:13-17.	Other Exclude
86.	Flint, E, Cummins, S, Matthews, S. Do perceptions of the neighbourhood food environment predict fruit and vegetable intake in low-income neighbourhoods? Health Place. 2013. 24:11-5. doi:10.1016/j.healthplace.2013.07.005.	Outcome

		OOD/ (1 OOd 1 lalls Mapla No
87.	French, MT, Browntaylor, D, Bluthenthal, RN. Price elasticity of demand for malt liquor beer: findings from a US pilot study. Soc Sci Med. 2006. 62:2101-11. doi:10.1016/j.socscimed.2005.10.012.	Outcome
88.	French, SA, Tangney, CC, Crane, MM, Wang, Y, Appelhans, BM. Nutrition quality of food purchases varies by household income: the SHoPPER study. BMC Public Health. 2019. 19:231. doi:10.1186/s12889-019-6546-2.	Outcome
89.	Glanz, K, Sallis, JF, Saelens, BE, Frank, LD. Nutrition Environment Measures Survey in stores (NEMS-S): development and evaluation. Am J Prev Med. 2007. 32:282-9. doi:10.1016/j.amepre.2006.12.019.	Outcome
90.	Glanz, Karen, Basil, Michael, Maibach, Edward, Goldberg, Jeanne, Snyder, DAN. Why Americans eat what they do: taste, nutrition, cost, convenience, and weight control concerns as influences on food consumption. Journal of the American Dietetic Association. 1998. 98:1118-1126.	Outcome
91.	Golan, Elise H, Stewart, Hayden, Kuchler, Fred, Dong, Diansheng. Can low-income Americans afford a healthy diet? 2008.	Comparator
92.	Gordon-Larsen, P, Guilkey, DK, Popkin, BM. An economic analysis of community-level fast food prices and individual-level fast food intake: a longitudinal study. Health Place. 2011. 17:1235-41. doi:10.1016/j.healthplace.2011.07.011.	Outcome
93.	Gorham, G, Dulin-Keita, A, Risica, PM, Mello, J, Papandonatos, G, Nunn, A, Gorham, S, Roberson, M, Gans, KM. Effectiveness of Fresh to You, a Discount Fresh Fruit and Vegetable Market in Low-Income Neighborhoods, on Children's Fruit and Vegetable Consumption, Rhode Island, 2010-2011. Prev Chronic Dis. 2015. 12:E176. doi:10.5888/pcd12.140583.	Intervention/Exposure
94.	Goryakin, Y, Monsivais, P, Suhrcke, M. Soft drink prices, sales, body mass index and diabetes: Evidence from a panel of low-, middle- and high-income countries. Food Policy. 2017. 73:88-94. doi:10.1016/j.foodpol.2017.09.002.	Intervention/Exposure
95.	Gouri Suresh, SS, Schauder, SA. Income Segregation and Access to Healthy Food. Am J Prev Med. 2020. 59:e31-e38. doi:10.1016/j.amepre.2020.02.009.	Outcome
96.	Govindasamy, Ramu, Purduri, Venkata, Kelley, Kathleen, Simon, JamesE. Influence of Consumer Demographics on the Demand for Locally Grown Ethnic Greens and Herbs Because of Food Miles Concerns: A Logit Model Analysis. 2012. 43:2. doi:10.22004/ag.econ.139446.	Outcome
97.	Grindal, T, Wilde, P, Schwartz, G, Klerman, J, Bartlett, S, Berman, D. Does food retail access moderate the impact of fruit and vegetable incentives for SNAP participants? Evidence from western Massachusetts. Food Policy. 2016. 61:59-69. doi:10.1016/j.foodpol.2016.02.002.	Outcome
98.	Gupta, S, Rose, CM, Buszkiewicz, J, Ko, LK, Mou, J, Cook, A, Aggarwal, A, Drewnowski, A. Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: findings from the Seattle Obesity Study (SOS) III. Br J Nutr. 2020. 1-9. doi:10.1017/s0007114520004705.	Outcome
99.	Hagues, R, Stotz, S, Childers, A, Phua, J, Hibbs, J, Murray, D, Lee, JS. Social marketing nutrition education for low-income population. Soc Work Public Health. 2018. 33:317-328. doi:10.1080/19371918.2018.1469065.	Comparator

100.	Han, E, Powell, LM. Effect of food prices on the prevalence of obesity among young adults. Public Health. 2011. 125:129-35. doi:10.1016/j.puhe.2010.11.014.	Intervention/Exposure
101.	Han, Euna, Powell, LM. FAST FOOD PRICES AND ADULT BODY WEIGHT OUTCOMES: EVIDENCE BASED ON LONGITUDINAL QUANTILE REGRESSION MODELS. Contemporary Economic Policy. 2013. 31:528-536. doi:10.1111/j.1465-7287.2012.00322.x.	Outcome
102.	Hanson, GD, Herrmann, RO, Dunn, JW. Determinants of seafood purchase behavior: Consumers, restaurants, and grocery stores. American Journal of Agricultural Economics. 1995. 77:1301-1305. doi:10.2307/1243365.	Study Design
103.	Hanson, KL, Garner, J, Connor, LM, Jilcott Pitts, SB, McGuirt, J, Harris, R, Kolodinsky, J, Wang, W, Sitaker, M, Ammerman, A, Seguin, RA. Fruit and Vegetable Preferences and Practices May Hinder Participation in Community-Supported Agriculture Among Low-Income Rural Families. J Nutr Educ Behav. 2019. 51:57-67. doi:10.1016/j.jneb.2018.08.006.	Comparator
104.	Harwood, EM, Erickson, DJ, Fabian, LE, Jones-Webb, R, Slater, S, Chaloupka, FJ. Effects of communities, neighborhoods and stores on retail pricing and promotion of beer. J Stud Alcohol. 2003. 64:720-6. doi:10.15288/jsa.2003.64.720.	Outcome
105.	Hausman, J, Leibtag, E. Consumer benefits from increased competition in shopping outlets: Measuring the effect of Wal-Mart. Journal of Applied Econometrics. 2007. 22:1157-1177. doi:10.1002/jae.994.	Study Design
106.	Haynes-Maslow, L, Auvergne, L, Mark, B, Ammerman, A, Weiner, BJ. Low-Income Individuals' Perceptions About Fruit and Vegetable Access Programs: A Qualitative Study. J Nutr Educ Behav. 2015. 47:317-24.e1. doi:10.1016/j.jneb.2015.03.005.	Intervention/Exposure
107.	Haynes-Maslow, L, Parsons, SE, Wheeler, SB, Leone, LA. A qualitative study of perceived barriers to fruit and vegetable consumption among low-income populations, North Carolina, 2011. Prev Chronic Dis. 2013. 10:E34. doi:10.5888/pcd10.120206.	Outcome
108.	Hendrickson, D, Smith, C, Eikenberry, N. Fruit and vegetable access in four low-income food deserts communities in Minnesota. Agriculture and Human Values. 2006. 23:371-383. doi:10.1007/s10460-006-9002-8.	Comparator
109.	Hillier, A, McLaughlin, J, Cannuscio, CC, Chilton, M, Krasny, S, Karpyn, A. The impact of WIC food package changes on access to healthful food in 2 low-income urban neighborhoods. J Nutr Educ Behav. 2012. 44:210-6. doi:10.1016/j.jneb.2011.08.004.	Outcome
110.	Hinrichs, CC. Embeddedness and local food systems: notes on two types of direct agricultural market. Journal of rural studies. 2000. 16:295-303.	Intervention/Exposure
111.	Hirsch, J A, Hillier, A. Exploring the role of the food environment on food shopping patterns in Philadelphia, PA, USA: a semiquantitative comparison of two matched neighborhood groups. International journal of environmental research and public health. 2013. 10:295-313.	Comparator
112.	Hirvonen, K, Bai, Y, Headey, D, Masters, WA. Affordability of the EAT-Lancet reference diet: a global analysis. Lancet Glob Health. 2020. 8:e59-e66. doi:10.1016/s2214-109x(19)30447-4.	Comparator
113.	Hoenink, JC, Beulens, JWJ, Harbers, MC, Boer, JMA, Dijkstra, SC, Nicolaou, M, van der Schouw, YT, Sluijs, I, Verschuren, WMM, Waterlander, W, Mackenbach, JD. To what extent do	Country

	dietary costs explain socio-economic differences in dietary behavior? Nutr J. 2020. 19:88. doi:10.1186/s12937-020-00608-x.	
114.	Hu, A, Acosta, A, McDaniel, A, Gittelsohn, J. Community perspectives on barriers and strategies for promoting locally grown produce from an urban agriculture farm. Health Promot Pract. 2013. 14:69-74. doi:10.1177/1524839911405849.	Comparator
115.	Huang, CL, Lin, BH. A hedonic analysis of fresh tomato prices among regional markets. Review of Agricultural Economics. 2007. 29:783-800. doi:10.1111/j.1467-9353.2007.00387.x.	Outcome
116.	Huang, KS. Nutrient elasticities in a complete food demand system. American Journal of Agricultural Economics. 1996. 78:21-29. doi:10.2307/1243775.	Intervention/Exposure
117.	Huang, KS, Huang, SW. Consumer welfare effects of increased food and energy prices. Applied Economics. 2012. 44:2527-2536. doi:10.1080/00036846.2011.566182.	Outcome
118.	Huang, M-H, Hahn, DE, Jones, Eugene. A SOCIOECONOMIC APPROACH TO ASSESSING PRICE COMPETITION BETWEEN PRIVATE LABELS AND NATIONAL BRANDS: THE CASE OF SHREDDED CHEESE. 2003. 26. doi:10.22004/ag.econ.21993.	Outcome
119.	Ismail, MS, Ver Ploeg, M, Chomitz, VR, Wilde, P. Differences in Food-at-Home Spending for SNAP and Non-SNAP Households Given Geographic Price Variation. J Acad Nutr Diet. 2020. 120:1142-1150.e12. doi:10.1016/j.jand.2019.12.017.	Outcome
120.	Ivanic, MA, Martin, W. Short- and Long-Run Impacts of Food Price Changes on Poverty. Short-and Long-Run Impacts of Food Price Changes on Poverty doi:10.1596/1813-9450-7011.	Country
121.	Jetter, KM, Adkins, J, Cortez, S, Hopper, GK, Jr, Shively, V, Styne, DM. Yes We Can: Eating Healthy on a Limited Budget. J Nutr Educ Behav. 2019. 51:268-276. doi:10.1016/j.jneb.2018.12.002.	Intervention/Exposure
122.	Jetter, KM, Cassady, DL. The availability and cost of healthier food alternatives. Am J Prev Med. 2006. 30:38-44. doi:10.1016/j.amepre.2005.08.039.	Comparator
123.	Jetter, KM, Cassady, Diana. EXPLAINING DISPARITIES IN THE COST OF HEALTHIER FOOD. 2004. 17. doi:10.22004/ag.econ.20181.	Study Design
124.	Jiao, J, Moudon, AV, Ulmer, J, Hurvitz, PM, Drewnowski, A. How to identify food deserts: measuring physical and economic access to supermarkets in King County, Washington. Am J Public Health. 2012. 102:e32-9. doi:10.2105/ajph.2012.300675.	Intervention/Exposure
125.	Jilcott, SB, Hurwitz, J, Moore, JB, Blake, C. Qualitative perspectives on the use of traditional and nontraditional food venues among middle- and low-income women in Eastern North Carolina. Ecol Food Nutr. 2010. 49:373-89. doi:10.1080/03670244.2010.507438.	Outcome
126.	Johnson, DS, Rogers, JM, Tan, Lucilla. A Century of Family Budgets in the United States. Monthly Labor Review. 2001. 18.	Outcome
127.	Johnson, JS, Nobmann, ED, Asay, E. Factors related to fruit, vegetable and traditional food consumption which may affect health among Alaska Native People in Western Alaska. Int J Circumpolar Health. 2012. 71:17345. doi:10.3402/ijch.v71i0.17345.	Outcome
128.	Jones, E. An analysis of consumer food shopping behavior using supermarket scanner data: Differences. American Journal of Agricultural Economics. 1997. 79:1437. doi:10.2307/1244358.	Comparator

129.	Jones, E. Consumer demand for carbohydrates: A look across products and income classes. Agribusiness. 1997. 13:599-612. doi:10.1002/(SICI)1520-6297(199711/12)13:6<599::AID-AGR5>3.0.CO;2-Z.	Outcome
130.	Karp, RJ, Wong, G, Orsi, M. Demonstrating Nutrient Cost Gradients: A Brooklyn Case Study. Int J Vitam Nutr Res. 2014. 84:244-51. doi:10.1024/0300-9831/a000210.	Comparator
131.	Kaufman, PR, MacDonald, JM, Lutz, SM, Smallwood, DM. Do the poor pay more for food? Item selection and price differences affect low-income household food costs. 1997. Agricultural Economic Report 759.	Other Exclude
132.	Kaufman, PR. ASSESSMENT OF WIC COST-CONTAINMENT PRACTICES: FOOD ASSISTANCE RESEARCH BRIEF. 2003. 2. doi:10.22004/ag.econ.33855.	Intervention/Exposure
133.	Keim, NL, Forester, SM, Lyly, M, Aaron, GJ, Townsend, MS. Vegetable variety is a key to improved diet quality in low-income women in California. J Acad Nutr Diet. 2014. 114:430-5. doi:10.1016/j.jand.2013.07.026.	Intervention/Exposure
134.	Kern, DM, Auchincloss, AH, Stehr, MF, Roux, AVD, Moore, LV, Kanter, GP, Robinson, LF. Neighborhood Prices of Healthier and Unhealthier Foods and Associations with Diet Quality: Evidence from the Multi-Ethnic Study of Atherosclerosis. Int J Environ Res Public Health. 2017. 14:doi:10.3390/ijerph14111394.	Intervention/Exposure
135.	Kershaw, KN, Klikuszowian, E, Schrader, L, Siddique, J, Van Horn, L, Womack, VY, Zenk, SN. Assessment of the influence of food attributes on meal choice selection by socioeconomic status and race/ethnicity among women living in Chicago, USA: A discrete choice experiment. Appetite. 2019. 139:19-25. doi:10.1016/j.appet.2019.04.003.	Outcome
136.	Khan, R, Misra, K, Singh, V. Will a Fat Tax Work? Marketing Science. 2016. 35:10-26. doi:10.1287/mksc.2015.0917.	Outcome
137.	Khan, T, Powell, LM, Wada, R. Fast food consumption and food prices: evidence from panel data on 5th and 8th grade children. J Obes. 2012. 2012:857697. doi:10.1155/2012/857697.	Outcome
138.	King, RP, Leibtag, ES, Behl, AS. SUPERMARKET CHARACTERISTICS AND OPERATING COSTS IN LOW-INCOME AREAS. 2004. 26. doi:10.22004/ag.econ.20361.	Study Design
139.	Kinsey, JD. The economics of federal food programs: Weighing the costs and benefits - Executive Summary. 2013. 3. doi:10.22004/ag.econ.156194.	Outcome
140.	Kinsey, JD. The economics of federal food programs: Weighing the costs and benefits. 2013. 20. doi:10.22004/ag.econ.156193.	Outcome
141.	Ko, LK, Enzler, C, Perry, CK, Rodriguez, E, Mariscal, N, Linde, S, Duggan, C. Food availability and food access in rural agricultural communities: use of mixed methods. BMC Public Health. 2018. 18:634. doi:10.1186/s12889-018-5547-x.	Outcome
142.	Koelkebeck, KW, Bell, DD, Carey, JB, Anderson, KE, Darre, MJ. Egg marketing in national supermarkets: Products, packaging, and prices - Part 3. Poultry Science. 2001. 80:396-400. doi:10.1093/ps/80.4.396.	Intervention/Exposure
143.	Krebs-Smith, SM, Kantor, LS. Choose a variety of fruits and vegetables daily: understanding the complexities. J Nutr. 2001. 131:487s-501s. doi:10.1093/jn/131.2.487S.	Intervention/Exposure

144.	Krukowski, RA, West, DS, Harvey-Berino, J, Elaine Prewitt, T. Neighborhood impact on healthy food availability and pricing in food stores. J Community Health. 2010. 35:315-20. doi:10.1007/s10900-010-9224-y.	Outcome
145.	Kuhns, A, Levin, D. Retail Food Price Inflation Varies Geographically. 2016. 1. doi:10.22004/ag.econ.244275.	Comparator
146.	Kumcu, A, Volpe, R III. Disaggregated Retail Food Price Indices Using Homescan Data: An Application to Income Levels and SNAP Benefits. 2013. 6. doi:10.22004/ag.econ.150985.	Outcome
147.	Kwon, S-O, Oh, S-Y. Associations of household food insecurity with socioeconomic measures, health status and nutrient intake in low income elderly. Journal of Nutrition and Health. 2007. 40:762-768.	Language
148.	Kyureghian, G, Nayga, RM. FOOD STORE ACCESS, AVAILABILITY, AND CHOICE WHEN PURCHASING FRUITS AND VEGETABLES. American Journal of Agricultural Economics. 2013. 95:1280-1286. doi:10.1093/ajae/aat043.	Outcome
149.	Laraia, BA, Leak, TM, Tester, JM, Leung, CW. Biobehavioral Factors That Shape Nutrition in Low-Income Populations: A Narrative Review. American Journal of Preventive Medicine. 2017. 52:S118-S126. doi:10.1016/j.amepre.2016.08.003.	Study Design
150.	Larsen, K, Gilliland, J. A farmers' market in a food desert: Evaluating impacts on the price and availability of healthy food. Health Place. 2009. 15:1158-62. doi:10.1016/j.healthplace.2009.06.007.	Country
151.	Larson, NI, Story, MT, Nelson, MC. Neighborhood environments: disparities in access to healthy foods in the US. American journal of preventive medicine. 2009. 36:74-81. e10.	Study Design
152.	Lear, SA, Gasevic, D, Schuurman, N. Association of supermarket characteristics with the body mass index of their shoppers. Nutr J. 2013. 12:117. doi:10.1186/1475-2891-12-117.	Country
153.	Lee, RE, Heinrich, KM, Medina, AV, Regan, GR, Reese-Smith, JY, Jokura, Y, Maddock, JE. A picture of the healthful food environment in two diverse urban cities. Environ Health Insights. 2010. 4:49-60. doi:10.4137/ehi.s3594.	Intervention/Exposure
154.	Leibtag, E. Where you shop matters: Store formats drive variation in retail food prices. Amber Waves. 2005. 3:12-18.	Comparator
155.	Lent, MR, Vander Veur, SS, McCoy, TA, Wojtanowski, AC, Sandoval, B, Sherman, S, Komaroff, E, Foster, GD. A randomized controlled study of a healthy corner store initiative on the purchases of urban, low-income youth. Obesity (Silver Spring). 2014. 22:2494-500. doi:10.1002/oby.20878.	Outcome
156.	Leone, LA, Beth, D, Ickes, SB, Macguire, K, Nelson, E, Smith, RA, Tate, DF, Ammerman, AS. Attitudes Toward Fruit and Vegetable Consumption and Farmers' Market Usage Among Low-Income North Carolinians. J Hunger Environ Nutr. 2012. 7:64-76. doi:10.1080/19320248.2012.651386.	Intervention/Exposure
157.	Li, Y, Zhang, D, Thapa, JR, Madondo, K, Yi, S, Fisher, E, Griffin, K, Liu, B, Wang, Y, Pagán, JA. Assessing the role of access and price on the consumption of fruits and vegetables across New York City using agent-based modeling. Prev Med. 2018. 106:73-78. doi:10.1016/j.ypmed.2017.10.014.	Outcome

158.	Libman, K. Has New York City fallen into the local trap? Public Health. 2015. 129:310-7.	Outcome
	doi:10.1016/j.puhe.2014.12.016.	
159.	Locher, JL, Ritchie, CS, Roth, DL, Sen, B, Vickers, KS, Vailas, LI. Food choice among	Intervention/Exposure
	homebound older adults: motivations and perceived barriers. J Nutr Health Aging. 2009. 13:659-	
	64. doi:10.1007/s12603-009-0194-7.	
160.	Lopez, E, Lopez, RA. Demand for Differentiated Milk Products: Implications for Price	Intervention/Exposure
	Competition. Agribusiness. 2009. 25:453-465. doi:10.1002/agr.20219.	
161.	Lucan, SC, Barg, FK, Long, JA. Promoters and barriers to fruit, vegetable, and fast-food	Outcome
	consumption among urban, low-income African Americansa qualitative approach. Am J Public	
	Health. 2010. 100:631-5. doi:10.2105/ajph.2009.172692.	
162.	Lucan, SC, Maroko, AR, Sanon, O, Frias, R, Schechter, CB. Urban farmers' markets:	Intervention/Exposure
.02.	accessibility, offerings, and produce variety, quality, and price compared to nearby stores.	morroman, Exposure
	Appetite. 2015. 90:23-30. doi:10.1016/j.appet.2015.02.034.	
163.	Lunsford, J, Brunt, A, Foote, J, Rhee, Y, Strand, M, Segall, M. Analysis of Availability, Quality,	Outcome
100.	and Price of Food Options in Denver, CO Grocery Stores. Journal of hunger & environmental	Odleome
	nutrition. 2020. doi:10.1080/19320248.2020.1741482.	
164.	Lusk, JL, Tonsor, GT. How Meat Demand Elasticities Vary with Price, Income, and Product	Outcome
104.		Outcome
	Category. Applied Economic Perspectives and Policy. 2016. 38:673-711.	
40=	doi:10.1093/aepp/ppv050.	
165.	MacNell, L. A geo-ethnographic analysis of low-income rural and urban women's food shopping	Comparator
	behaviors. Appetite. 2018. 128:311-320. doi:10.1016/j.appet.2018.05.147.	_
166.	Mancino, L, Kuchler, F. Demand for Whole-grain Bread Before and After the Release of Dietary	Outcome
	Guidelines. Applied Economic Perspectives and Policy. 2012. 34:76-101.	
	doi:10.1093/aepp/ppr035.	
167.	Marcy, TR, Britton, ML, Harrison, D. Identification of barriers to appropriate dietary behavior in	Outcome
	low-income patients with type 2 diabetes mellitus. Diabetes Ther. 2011. 2:9-19.	
	doi:10.1007/s13300-010-0012-6.	
168.	Martin, KS, Ghosh, D, Page, M, Wolff, M, McMinimee, K, Zhang, M. What role do local grocery	Intervention/Exposure
	stores play in urban food environments? A case study of Hartford-Connecticut. PLoS One.	•
	2014. 9:e94033. doi:10.1371/journal.pone.0094033.	
169.	Martin-Neuninger, R, Ruby, MB. What Does Food Retail Research Tell Us About the	Study Design
	Implications of Coronavirus (COVID-19) for Grocery Purchasing Habits? Front Psychol. 2020.	, 3
	11:1448. doi:10.3389/fpsyg.2020.01448.	
170.	Masters, MA, Stanek Krogstrand, KL, Eskridge, KM, Albrecht, JA. Race/ethnicity and income in	Outcome
170.	relation to the home food environment in US youth aged 6 to 19 years. J Acad Nutr Diet. 2014.	Catoonio
	114:1533-43. doi:10.1016/j.jand.2014.04.023.	
171.	Mayer, SE, Leone, MP. What money can't buy: Family income and children's life chances. 1997.	Study Design
172.	McDowell, DR, Allen-Smith, JE, McLean-Meyinsse, PE. Food expenditures and socioeconomic	Outcome
114.	characteristics: Focus on income class. American Journal of Agricultural Economics. 1997.	Catoonic
	79:1444-1451. doi:10.2307/1244359.	
	13.1444-1401. UOI.10.2001/1244003.	

173.	McGuirt, JT, Huebner, G, Ward, R, Jilcott Pitts, SB. Food and Beverage Options at Highway Rest Areas in North Carolina: A Mixed-Methods Audit and Geospatial Approach. Prev Chronic Dis. 2019. 16:E142. doi:10.5888/pcd16.190129.	Comparator
174.	McGuirt, JT, Pitts, SBJ, Hanson, KL, DeMarco, M, Seguin, RA, Kolodinsky, J, Becot, F, Ammerman, AS. A modified choice experiment to examine willingness to participate in a Community Supported Agriculture (CSA) program among low-income parents. Renewable Agriculture and Food Systems. 2020. 35:140-157. doi:10.1017/s1742170518000364.	Intervention/Exposure
175.	McLaughlin, PW. Specialized Stores Serving WIC Customers in California Improve Food Access Without Raising Food Costs. 2019. May 2019:doi:10.22004/ag.econ.302709.	Intervention/Exposure
176.	McLaughlin, PW, Martinez, S. Specialized Stores Serving Participants in USDA's Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) Can Reduce Program Food Costs and Increase Food Store Access. 2021. 2020:doi:10.22004/ag.econ.310091.	Comparator
177.	Meade, B, Muhammad, A. The Influence of Income and Prices on Global Dietary Patterns by Country, Age, and Gender. 2017. doi:10.22004/ag.econ.266027.	Comparator
178.	Meyer, BD, Sullivan, JX. Five decades of consumption and income poverty. 2009.	Comparator
179.	Meyer, KA, Guilkey, DK, Ng, SW, Duffey, KJ, Popkin, BM, Kiefe, CI, Steffen, LM, Shikany, JM, Gordon-Larsen, P. Sociodemographic differences in fast food price sensitivity. JAMA Intern Med. 2014. 174:434-42. doi:10.1001/jamainternmed.2013.13922.	Outcome
180.	Monsivais, P, Aggarwal, A, Drewnowski, A. Are socio-economic disparities in diet quality explained by diet cost? J Epidemiol Community Health. 2012. 66:530-5. doi:10.1136/jech.2010.122333.	Outcome
181.	Monsivais, P, Drewnowski, A. Lower-energy-density diets are associated with higher monetary costs per kilocalorie and are consumed by women of higher socioeconomic status. J Am Diet Assoc. 2009. 109:814-22. doi:10.1016/j.jada.2009.02.002.	Outcome
182.	Monsivais, P, Perrigue, MM, Adams, SL, Drewnowski, A. Measuring diet cost at the individual level: a comparison of three methods. Eur J Clin Nutr. 2013. 67:1220-5. doi:10.1038/ejcn.2013.176.	Outcome
183.	Mook, K, Laraia, BA, Oddo, VM, Jones-Smith, JC. Food Security Status and Barriers to Fruit and Vegetable Consumption in Two Economically Deprived Communities of Oakland, California, 2013-2014. Prev Chronic Dis. 2016. 13:E21. doi:10.5888/pcd13.150402.	Outcome
184.	Moore, Latetia V, Diez Roux, Ana V. Associations of neighborhood characteristics with the location and type of food stores. American journal of public health. 2006. 96:325-331.	Outcome
185.	Morland, K, Filomena, S. The utilization of local food environments by urban seniors. Prev Med. 2008. 47:289-93. doi:10.1016/j.ypmed.2008.03.009.	Intervention/Exposure
186.	Morland, K, Wing, S, Roux, AD, Poole, C. Neighborhood characteristics associated with the location of food stores and food service places. American journal of preventive medicine. 2002. 22:23-29.	Outcome
187.	Mulik, K, Haynes-Maslow, L. The Affordability of MyPlate: An Analysis of SNAP Benefits and the Actual Cost of Eating According to the Dietary Guidelines. J Nutr Educ Behav. 2017. 49:623-631.e1. doi:10.1016/j.jneb.2017.06.005.	Intervention/Exposure

188.	Mushi-Brunt, C, Haire-Joshu, D, Elliott, M. Food spending behaviors and perceptions are associated with fruit and vegetable intake among parents and their preadolescent children. J Nutr Educ Behav. 2007. 39:26-30. doi:10.1016/j.jneb.2006.06.004.	Outcome
189.	Neckerman, KM, Lovasi, L, Yousefzadeh, P, Sheehan, D, Milinkovic, K, Baecker, A, Bader, MD, Weiss, C, Lovasi, GS, Rundle, A. Comparing nutrition environments in bodegas and fast-food restaurants. J Acad Nutr Diet. 2014. 114:595-602. doi:10.1016/j.jand.2013.07.007.	Outcome
190.	Nelson, E, Fitzgerald, J, Tefft, N. The distributional impact of a green payment policy for organic fruit. PLoS One. 2019. 14:e0211199. doi:10.1371/journal.pone.0211199.	Outcome
191.	Nelson, JP. Economic and Demographic Factors in U.S. Alcohol Demand: A Growth-Accounting Analysis. Empirical Economics. 1997. 22:83-102. doi:10.1007/BF01188171.	Study Design
192.	Nord, M. Food Spending Declined and Food Insecurity Increased for Middle-Income and Low-Income Households From 2000 to 2007. 2009. 19. doi:10.22004/ag.econ.56627.	Outcome
193.	Nord, M, Hopwood, H. Can Food Stamps Do More to Improve Food Choices? An Economic PerspectiveHigher Cost of Food in Some Areas May Affect Food Stamp Households' Ability To Make Healthy Food Choices. 2007. 4. doi:10.22004/ag.econ.59429.	Comparator
194.	O'Connell, M, Buchwald, DS, Duncan, GE. Food access and cost in American Indian communities in Washington State. J Am Diet Assoc. 2011. 111:1375-9. doi:10.1016/j.jada.2011.06.002.	Intervention/Exposure
195.	Oliveira, Victor. Differences in Per-Person Food Costs for SNAP and WIC Have Widened Over Time. 2014. 1. doi:10.22004/ag.econ.210864.	Comparator
196.	Omar, MA, Coleman, G, Hoerr, S. Healthy eating for rural low-income toddlers: caregivers' perceptions. J Community Health Nurs. 2001. 18:93-106. doi:10.1207/s15327655jchn1802_03.	Comparator
197.	Onufrak, SJ, Zaganjor, H, Pan, L, Lee-Kwan, SH, Park, S, Harris, DM. Foods and Beverages Obtained at Worksites in the United States. J Acad Nutr Diet. 2019. 119:999-1008. doi:10.1016/j.jand.2018.11.011.	Outcome
198.	Otten, JJ, Buszkiewicz, J, Tang, W, Aggarwal, A, Long, M, Vigdor, J, Drewnowski, A. The Impact of a City-Level Minimum-Wage Policy on Supermarket Food Prices in Seattle-King County. Int J Environ Res Public Health. 2017. 14:doi:10.3390/ijerph14091039.	Intervention/Exposure
199.	Owens, MM, Ray, LA, MacKillop, J. Behavioral economic analysis of stress effects on acute motivation for alcohol. J Exp Anal Behav. 2015. 103:77-86. doi:10.1002/jeab.114.	Intervention/Exposure
200.	Park, JL, Holcomb, RB, Raper, KC, Capps, O. A demand systems analysis of food commodities by US households segmented by income. American Journal of Agricultural Economics. 1996. 78:290-300. doi:10.2307/1243703.	Outcome
201.	Pearson, T, Russell, J, Campbell, MJ, Barker, ME. Do 'food deserts' influence fruit and vegetable consumption?A cross-sectional study. Appetite. 2005. 45:195-7. doi:10.1016/j.appet.2005.04.003.	Outcome
202.	Pechey, R, Monsivais, P. Supermarket Choice, Shopping Behavior, Socioeconomic Status, and Food Purchases. Am J Prev Med. 2015. 49:868-77. doi:10.1016/j.amepre.2015.04.020.	Country

	· ·	OOD/(1 OOd 1 Idilo (Kapia (
203.	Pechey, R, Monsivais, P, Ng, YL, Marteau, TM. Why don't poor men eat fruit? Socioeconomic differences in motivations for fruit consumption. Appetite. 2015. 84:271-9. doi:10.1016/j.appet.2014.10.022.	Country
204.	Pechey, R, Monsivais, P. Socioeconomic inequalities in the healthiness of food choices: Exploring the contributions of food expenditures. Preventive medicine. 2016. 88:203-209.	Country
205.	Peñalvo, JL, Cudhea, F, Micha, R, Rehm, CD, Afshin, A, Whitsel, L, Wilde, P, Gaziano, T, Pearson-Stuttard, J, O'Flaherty, M, Capewell, S, Mozaffarian, D. The potential impact of food taxes and subsidies on cardiovascular disease and diabetes burden and disparities in the United States. BMC Med. 2017. 15:208. doi:10.1186/s12916-017-0971-9.	Outcome
206.	Peng, K, Kaza, N. Association between Neighborhood Food Access, Household Income, and Purchase of Snacks and Beverages in the United States. Int J Environ Res Public Health. 2020. 17:doi:10.3390/ijerph17207517.	Outcome
207.	Powell, LM. Fast food costs and adolescent body mass index: evidence from panel data. J Health Econ. 2009. 28:963-70. doi:10.1016/j.jhealeco.2009.06.009.	Outcome
208.	Powell, LM, Auld, MC, Chaloupka, FJ, O'Malley, PM, Johnston, LD. Access to fast food and food prices: relationship with fruit and vegetable consumption and overweight among adolescents. Adv Health Econ Health Serv Res. 2007. 17:23-48.	Outcome
209.	Powell, LM, Bao, Y. Food prices, access to food outlets and child weight. Econ Hum Biol. 2009. 7:64-72. doi:10.1016/j.ehb.2009.01.004.	Outcome
210.	Powell, LM, Han, E. The costs of food at home and away from home and consumption patterns among U.S. adolescents. J Adolesc Health. 2011. 48:20-6. doi:10.1016/j.jadohealth.2010.06.006.	Outcome
211.	Powell, LM, Han, E, Chaloupka, FJ. Economic Contextual Factors, Food Consumption, and Obesity among US Adolescents. Journal of Nutrition. 2010. 140:1175-1180. doi:10.3945/jn.109.111526.	Study Design
212.	Powell, LM, Jones, K, Duran, AC, Tarlov, E, Zenk, SN. The price of ultra-processed foods and beverages and adult body weight: Evidence from U.S. veterans. Econ Hum Biol. 2019. 34:39-48. doi:10.1016/j.ehb.2019.05.006.	Intervention/Exposure
213.	Powell, LM, Kumanyika, SK, Isgor, Z, Rimkus, L, Zenk, SN, Chaloupka, FJ. Price promotions for food and beverage products in a nationwide sample of food stores. Prev Med. 2016. 86:106-13. doi:10.1016/j.ypmed.2016.01.011.	Intervention/Exposure
214.	Powell, LM, Wada, R, Krauss, RC, Wang, Y. Ethnic disparities in adolescent body mass index in the United States: the role of parental socioeconomic status and economic contextual factors. Soc Sci Med. 2012. 75:469-76. doi:10.1016/j.socscimed.2012.03.019.	Outcome
215.	Powell, LM, Zhao, Z, Wang, Y. Food prices and fruit and vegetable consumption among young American adults. Health Place. 2009. 15:1064-70. doi:10.1016/j.healthplace.2009.05.002.	Outcome
216.	Powell, LM, Slater, S, Mirtcheva, D, Bao, Y, Chaloupka, FJ. Food store availability and neighborhood characteristics in the United States. Preventive medicine. 2007. 44:189-195.	Outcome

	7.5	USDA FOOD Flans Rapid Re
217.	Powell, LM Han, EEuna. Adult Obesity and the Price and Availability of Food in the United States. American Journal of Agricultural Economics. 2011. 93:378-384. doi:10.1093/ajae/aaq106.	Outcome
218.	Ramezani, CA, Rose, D, Murphy, S. AGGREGATION, FLEXIBLE FORMS, AND ESTIMATION OF FOOD-CONSUMPTION PARAMETERS. American Journal of Agricultural Economics. 1995. 77:525-532. doi:10.2307/1243221.	Intervention/Exposure
219.	Raper, KC, Wanzala, M Namakhoye, Nayga, RM. Food expenditures and household demographic composition in the US: a demand systems approach. Applied Economics. 2002. 34:981-992. doi:10.1080/00036840110061959.	Outcome
220.	Reed, J, Frazão, E, Itskowitz, R. How much do Americans pay for fruits and vegetables? 2004.	Intervention/Exposure
221.	Rehm, CD, Monsivais, P, Drewnowski, A. The quality and monetary value of diets consumed by adults in the United States. Am J Clin Nutr. 2011. 94:1333-9. doi:10.3945/ajcn.111.015560.	Outcome
222.	Rose, CM, Gupta, S, Buszkiewicz, J, Ko, LK, Mou, J, Cook, A, Moudon, AV, Aggarwal, A, Drewnowski, A. Small increments in diet cost can improve compliance with the Dietary Guidelines for Americans. Soc Sci Med. 2020. 266:113359. doi:10.1016/j.socscimed.2020.113359.	Outcome
223.	Rose, D. Access to healthy food: a key focus for research on domestic food insecurity. J Nutr. 2010. 140:1167-9. doi:10.3945/jn.109.113183.	Study Design
224.	Rummo, PE, Meyer, KA, Green Howard, A, Shikany, JM, Guilkey, DK, Gordon-Larsen, P. Fast food price, diet behavior, and cardiometabolic health: Differential associations by neighborhood SES and neighborhood fast food restaurant availability in the CARDIA study. Health Place. 2015. 35:128-35. doi:10.1016/j.healthplace.2015.06.010.	Outcome
225.	Sanjeevi, N, Freeland-Graves, JH. Association of Grocery Expenditure Relative to Thrifty Food Plan Cost with Diet Quality of Women Participating in the Supplemental Nutrition Assistance Program. J Acad Nutr Diet. 2018. 118:2315-2323. doi:10.1016/j.jand.2018.07.015.	Intervention/Exposure
226.	Semega, J, Kollar, M, Creamer, J, Mohan, A. Income and Poverty in the United States: 2018. 2020. 88.	Outcome
227.	Shannon, J. Beyond the supermarket solution: Linking food deserts, neighborhood context, and everyday mobility. Annals of the American Association of Geographers. 2016. 106:186-202.	Outcome
228.	Shaver, ER, Sadler, RC, Hill, AB, Bell, K, Ray, M, Choy-Shin, J, Lerner, J, Soldner, T, Jones, AD. The Flint Food Store Survey: combining spatial analysis with a modified Nutrition Environment Measures Survey in Stores (NEMS-S) to measure the community and consumer nutrition environments. Public Health Nutr. 2018. 21:1474-1485. doi:10.1017/s1368980017003950.	Outcome
229.	Shikany, JM, Carson, TL, Hardy, CM, Li, Y, Sterling, S, Hardy, S, Walker, CM, Baskin, ML. Assessment of the nutrition environment in rural counties in the Deep South. J Nutr Sci. 2018. 7:e27. doi:10.1017/jns.2018.18.	Comparator
230.	Singleton, CR, Fouché, S, Deshpande, R, Odoms-Young, A, Chatman, C, Spreen, C. Barriers to fruit and vegetable consumption among farmers' market incentive programme users in Illinois, USA. Public Health Nutr. 2018. 21:1345-1349. doi:10.1017/s1368980018000101.	Comparator

231.	Smith, C, Butterfass, J, Richards, R. Environment influences food access and resulting shopping and dietary behaviors among homeless Minnesotans living in food deserts. Agriculture and Human Values. 2010. 27:141-161. doi:10.1007/s10460-009-9191-z.	Other factors
232.	Smith, Travis A, Huang, Chung L, Lin, Biing-Hwan. Does price or income affect organic choice? Analysis of US fresh produce users. 2009.	Outcome
233.	Spoden, AL, Buszkiewicz, JH, Drewnowski, A, Long, MC, Otten, JJ. Seattle's minimum wage ordinance did not affect supermarket food prices by food processing category. Public Health Nutr. 2018. 21:1762-1770. doi:10.1017/s1368980017004037.	Intervention/Exposure
234.	Stallings, TL, Gazmararian, JA, Goodman, M, Kleinbaum, D. Agreement between the Perceived and Actual Fruit and Vegetable Nutrition Environments among Low-Income Urban Women. J Health Care Poor Underserved. 2015. 26:1304-18. doi:10.1353/hpu.2015.0109.	Intervention/Exposure
235.	Steenhuis, IH, Waterlander, WE, de Mul, A. Consumer food choices: the role of price and pricing strategies. Public Health Nutr. 2011. 14:2220-6. doi:10.1017/s1368980011001637.	Country
236.	Stegelin, F. Is Being Big Better? Shoppers Compare Food Merchandisers. 2016. 47:2. doi:10.22004/ag.econ.232317.	Comparator
237.	Steptoe, A, Pollard, TM, Wardle, J. Development of a measure of the motives underlying the selection of food: the food choice questionnaire. Appetite. 1995. 25:267-84. doi:10.1006/appe.1995.0061.	Country
238.	Stewart, H, Blisard, N. Who pays more for food? Journal of Agricultural Economics. 2008. 59:150-168. doi:10.1111/j.1477-9552.2007.00139.x.	Outcome
239.	Stewart, H, Blisard, N. The Thrifty Food Plan and low-income households in the United States: What food groups are being neglected? Food Policy. 2006. 31:469-482. doi:10.1016/j.foodpol.2005.12.002.	Outcome
240.	Stewart, H, Hyman, J, Frazão, E, Buzby, JC, Carlson, A. Can low-income Americans afford to satisfy MyPyramid fruit and vegetable guidelines? J Nutr Educ Behav. 2011. 43:173-9. doi:10.1016/j.jneb.2010.08.011.	Intervention/Exposure
241.	Sturm, R, Datar, A. Regional price differences and food consumption frequency among elementary school children. Public Health. 2011. 125:136-41. doi:10.1016/j.puhe.2010.11.016.	Outcome
242.	Sturm, R, Datar, A. Body mass index in elementary school children, metropolitan area food prices and food outlet density. Public Health. 2005. 119:1059-68. doi:10.1016/j.puhe.2005.05.007.	Intervention/Exposure
243.	Sullivan, CM, Pencak, JA, Freedman, DA, Huml, AM, León, JB, Nemcek, J, Theurer, J, Sehgal, AR. Comparison of the Availability and Cost of Foods Compatible With a Renal Diet Versus an Unrestricted Diet Using the Nutrition Environment Measures Survey. J Ren Nutr. 2017. 27:183-186. doi:10.1053/j.jrn.2016.12.008.	Intervention/Exposure
244.	Tach, L, Amorim, M. Constrained, Convenient, and Symbolic Consumption: Neighborhood Food Environments and Economic Coping Strategies among the Urban Poor. J Urban Health. 2015. 92:815-34. doi:10.1007/s11524-015-9984-x.	Intervention/Exposure
245.	Taylor, R, Villas-Boas, SB. FOOD STORE CHOICES OF POOR HOUSEHOLDS: A DISCRETE CHOICE ANALYSIS OF THE NATIONAL HOUSEHOLD FOOD ACQUISITION AND	Outcome

	PURCHASE SURVEY (FOODAPS). American Journal of Agricultural Economics. 2016. 98:513-532. doi:10.1093/ajae/aaw009.	
246.	Townsend, MS, Aaron, GJ, Monsivais, P, Keim, NL, Drewnowski, A. Less-energy-dense diets of low-income women in California are associated with higher energy-adjusted diet costs. Am J Clin Nutr. 2009. 89:1220-6. doi:10.3945/ajcn.2008.26916.	Intervention/Exposure
247.	Trapl, ES, Pike, SN, Borawski, E, Flocke, SA, Freedman, DA, Walsh, CC, Schneider, C, Yoder, L. Food Melt in Consumer Food Environments in Low-income Urban Neighborhoods. Am J Health Behav. 2017. 41:710-718. doi:10.5993/ajhb.41.6.5.	Comparator
248.	Treno, AJ, Gruenewald, PJ, Wood, DS, Ponicki, WR. The price of alcohol: a consideration of contextual factors. Alcohol Clin Exp Res. 2006. 30:1734-42. doi:10.1111/j.1530-0277.2006.00207.x.	Outcome
249.	Tschirley, DL, Rose, D. Developing Cost Effective Methods for Estimating Household Income and Nutrient Intake Adequacy. 2000. 6. doi:10.22004/ag.econ.11330.	Country
250.	Valera, P, Gallin, J, Schuk, D, Davis, N. "Trying to Eat Healthy" A Photovoice Study About Women's Access to Healthy Food in New York City. Affilia. 2009. 24:300-314.	Comparator
251.	Valluri, S, French, SA, Elbel, B, Oakes, JM, Rydell, SA, Harnack, LJ. Within- and Between-Household Variation in Food Expenditures Among Low-Income Households Using a Novel Simple Annotated Receipt Method. Front Nutr. 2020. 7:582999. doi:10.3389/fnut.2020.582999.	Intervention/Exposure
252.	Ver Ploeg, M, Rahko vs.ky, I. Recent Evidence on the Effects of Food Store Access on Food Choice and Diet Quality. 2016. 1. doi:10.22004/ag.econ.244274.	Outcome
253.	Vogel, C, Ntani, G, Inskip, H, Barker, M, Cummins, S, Cooper, C, Moon, G, Baird, J. Education and the Relationship Between Supermarket Environment and Diet. Am J Prev Med. 2016. 51:e27-e34. doi:10.1016/j.amepre.2016.02.030.	Country
254.	Volpe, R. WIC Foods Cost More in Smaller Stores. 2014. 1. doi:10.22004/ag.econ.210848.	Intervention/Exposure
255.	Wada, R, Han, EN, Powell, LM. Associations between soda prices and intake: Evidence from 24-h dietary recall data. Food Policy. 2015. 55:54-60. doi:10.1016/j.foodpol.2015.05.009.	Outcome
256.	Walker, RE, Fryer, CS, Butler, J, Keane, CR, Kriska, A, Burke, JG. Factors influencing food buying practices in residents of a low-income food desert and a low-income food oasis. Journal of Mixed Methods Research. 2011. 5:247-267.	Comparator
257.	Walker, TA, Lee, JS. Changes in key food purchasing practices of Supplemental Nutrition Assistance Program (SNAP)-eligible older adults following SNAP benefit receipt. Transl Behav Med. 2020. 10:1286-1296. doi:10.1093/tbm/ibaa029.	Comparator
258.	Waterlander, WE, de Haas, WE, van Amstel, I, Schuit, AJ, Twisk, JWR, Visser, M, Seidell, JC, Steenhuis, IHM. Energy density, energy costs and income–how are they related? Public health nutrition. 2010. 13:1599-1608.	Country
259.	Weatherspoon, D, Oehmke, J, Dembélé, A, Coleman, M, Satimanon, T, Weatherspoon, L. Price and Expenditure Elasticities for Fresh Fruits in an Urban Food Desert. Urban Studies (Sage Publications, Ltd.). 2013. 50:88-106. doi:10.1177/0042098012448555.	Intervention/Exposure

260.	Webber, CB, Sobal, J, Dollahite, JS. Shopping for fruits and vegetables. Food and retail	Comparator
	qualities of importance to low-income households at the grocery store. Appetite. 2010. 54:297-	
	303. doi:10.1016/j.appet.2009.11.015.	
261.	Weber, JA. Increasing food costs for consumers and food programs straining pocketbooks. J	Study Design
	Am Diet Assoc. 2008. 108:615-7. doi:10.1016/j.jada.2008.02.010.	
262.	Wiig, K, Smith, C. The art of grocery shopping on a food stamp budget: factors influencing the	Outcome
	food choices of low-income women as they try to make ends meet. Public Health Nutr. 2009.	
	12:1726-34. doi:10.1017/s1368980008004102.	
263.	Wilde, PE, Andrews, MS. The Food Stamp Program in an Era of Welfare Reform: Electronic	Outcome
	Benefits and Changing Sources of Cash Income. Journal of Consumer Affairs. 2000. 34:31.	
	doi:10.1111/j.1745-6606.2000.tb00082.x.	
264.	Winham, DM, Knoblauch, ST, Heer, MM, Thompson, SV, Der Ananian, C. African-American	Outcome
	Views of Food Choices and Use of Traditional Foods. Am J Health Behav. 2020. 44:848-863.	
	doi:10.5993/ajhb.44.6.9.	
265.	Winicki, J, Gundersen, C, Jolliffe, D. ISSUES IN FOOD ASSISTANCE - HOW DO FOOD	Outcome
	ASSISTANCE PROGRAMS IMPROVE THE WELL-BEING OF LOW-INCOME FAMILIES?	
000	2002. 4. doi:10.22004/ag.econ.262255.	O 1
266.	Yen, ST, Lin, B-H, Smallwood, DM, Andrews, M. Demand for Nonalcoholic Beverages: The	Outcome
007	Case of Low-Income Households. Agribusiness. 2004. 20:309-321. doi:10.1002/agr.20015.	latamashina /F
267.	Young, CM, Batch, BC, Svetkey, LP. Effect of socioeconomic status on food availability and	Intervention/Exposure
	cost of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern. J Clin Hypertens	
260	(Greenwich). 2008. 10:603-11. doi:10.1111/j.1751-7176.2008.08199.x.	Comparator
268.	Zeballos, E, Sinclair, W. Average Share of Income Spent on Food in the United States Remained Relatively Steady From 2000 to 2019. 2020. 2020:doi:10.22004/ag.econ.307278.	Comparator
269.	Zenk, SN, Schulz, AJ, Israel, BA, James, SA, Bao, S, Wilson, ML. Fruit and vegetable access	Intervention/Exposure
209.	differs by community racial composition and socioeconomic position in Detroit, Michigan. Ethn	intervention/Exposure
	Dis. 2006. 16:275-280.	
270.	Zenk, SN, Schulz, AJ, Lachance, LL, Mentz, G, Kannan, S, Ridella, W, Galea, S. Multilevel	Outcome
210.	correlates of satisfaction with neighborhood availability of fresh fruits and vegetables. Ann	Outcome
	Behav Med. 2009. 38:48-59. doi:10.1007/s12160-009-9106-7.	
271.	Zhang, G, You, W, Carlson, A, Lin, B-H. The Impact of Regional Food Cost Differences on the	Comparator
211.	TFP Recommendations. 2010. 2. doi:10.22004/ag.econ.61643.	Comparator
272.	Zhang, Q, Chen, Z, Diawara, N, Wang, Y. Prices of unhealthy foods, Food Stamp Program	Comparator
	participation, and body weight status among U.S. low-income women. J Fam Econ Issues.	- omparator
	2011. 32:245-256. doi:10.1007/s10834-010-9228-x.	
273.	Zhang, Q, Jones, S, Ruhm, CJ, Andrews, M. Higher food prices may threaten food security	Outcome
- •	status among American low-income households with children. J Nutr. 2013. 143:1659-65.	
	doi:10.3945/jn.112.170506.	

274.

USDA Food Plans Rapid Reviews and Evidence Scans

Intervention/Exposure

Zhao, AW, McGowan, CC, Zenk, SN, Kershaw, KN. Associations of the consumer food environment with eating behaviours and BMI. Public Health Nutr. 2020. 23:3197-3203. doi:10.1017/s1368980020002633.

Appendix 2-a: Literature search strategy for the rapid review on income and HEI

Database: PubMed

Vendor: National Library of Medicine

Date of Search: 5/11/2021

Limits Used: Filters: Language English Publication Dates 2008 - 2021

Total = 4,718

Search #	Concept	Search String	N
#1	Income	("Socioeconomic Factors"[Mesh] OR socioeconomic*[tiab] OR socio-economic*[tiab] OR "social factor*"[tiab] OR "social condition*"[tiab] OR poverty[tiab] OR "Residence Characteristics"[Mesh] OR "Vulnerable Populations"[Mesh] OR "vulnerable population*"[tiab] OR "underserved population*"[tiab] OR "disadvantaged population*"[tiab] OR "Income"[Mesh] OR income*[tiab] OR "Race Factors"[Mesh] OR "race factor*"[tiab] OR "Ethnic Groups"[Mesh] OR "ethnic group*"[tiab] OR "ethnic population*"[tiab] OR "Cross-Cultural Comparison"[Mesh] OR "cross-cultural"[tiab] OR "cross-cultural Characteristics"[Mesh] OR "cultural Characteristics"[Mesh] OR "cultural tharacteristic*"[tiab] OR "Cultural Diversity"[Mesh] OR "culturally diverse"[tiab] OR "Food Supply"[Mesh] OR "food desert*"[tiab] OR "food insecurit*"[tiab] OR "food environment*"[tiab] OR "food access"[tiab] OR "corner store*"[tiab] OR "food market*"[tiab] OR grocer*[tiab] OR "food store*"[tiab] OR "convenience store*"[tiab] OR "food outlet*"[tiab] OR "convenience store*"[tiab] OR "food outlet*"[tiab] OR neighborhood[tiab] OR "Census tract"[tiab] OR "census block"[tiab] OR "food assistance"[MeSH Terms] OR "food assistance"[Tiab])	1,087,878
#2	Dietary Patterns	("dietary pattern*"[tiab] OR "diet pattern*"[tiab] OR "eating pattern*"[tiab] OR "food pattern*"[tiab] OR "diet quality"[tiab] OR "dietary quality"[tiab] OR "diet divers*"[tiab] OR "dietary divers*"[tiab] OR "diet variety"[tiab] OR "dietary variety"[tiab] OR "varied diet"[tiab] OR "dietary guideline*"[tiab] OR "dietary recommendation*"[tiab] OR "dietary intake*"[tiab] OR "eating style*"[tiab] OR "Diet, Mediterranean"[Mesh] OR "Mediterranean Diet*"[tiab] OR "Dietary Approaches To Stop Hypertension"[Mesh] OR "Dietary Approaches To Stop Hypertension Diet*"[tiab] OR "DaSH diet*"[tiab] OR "Diet, Gluten-Free"[Mesh] OR "Gluten Free diet*"[tiab] OR "prudent diet*"[tiab] OR "Diet, Paleolithic"[Mesh] OR "Paleolithic Diet*"[tiab] OR "Diet, Vegetarian"[Mesh] OR "vegetarian diet*"[tiab] OR "vegan diet*"[tiab] OR "Diet, Healthy"[Mesh] OR "plant based diet*"[tiab] OR "Diet, Western"[Mesh] OR "western diet*"[tiab] OR "Diet, High-Fat"[Mesh] OR "high-fat diet*"[tiab] OR "low fat diet*"[tiab] OR (("Guideline Adherence"[Mesh] OR "guideline adherence*"[tiab]) AND (diet[tiab] OR dietary[tiab] OR food[tiab] OR beverage*[tiab] OR nutrition*[tiab])) OR "diet score*"[tiab] OR "diet quality score*"[tiab] OR "diet quality index*"[tiab] OR "diet quality score*"[tiab] OR "diet quality index*"[tiab] OR "diet quality index*"[tiab] OR "diet fiab] OR "diet quality index*"[tiab] OR "dietary index*"[tiab] OR "food score*"[tiab] OR "diet index*"[tiab] OR "dietScore[tiab] OR "healthy eating index"[tiab])	113,841

#4	Publication, Geography, and species excludes	#1 AND #2 NOT (letter[ptyp] OR editorial[ptyp] OR comment[ptyp] OR news[ptyp] OR "Congress"[Publication Type] OR "Consensus Development Conference"[Publication Type] OR editorial[tiab] OR commentary[tiab] OR "conference abstract*"[tiab] OR "systematic review*"[ti] OR "meta-analysis"[ptyp] OR "meta-analysis"[ti] OR "meta-analyses"[ti] OR "Review"[Publication Type] OR "Systematic Review"[Publication Type] OR "conference proceeding*"[tiab] OR "retracted publication"[ptyp] OR "retraction of publication"[ptyp] OR "retracted publication"[tiab] OR "retraction notice"[ti] OR "retracted publication"[tiab] OR "Published Erratum"[Publication Type] OR corrigenda[tiab] OR corrigendum[tiab] OR errata[tiab] OR erratum[tiab] OR protocol[ti] OR protocols[ti] OR "case report"[ti] OR "case series"[ti] OR "Case Reports"[Publication Type]) NOT ("Developing Countries"[Mesh] OR "developing countr*" OR "Under Developed Nation*" OR "low income countr*" OR "middle income countr*"OR "low-middle-income countr*" OR LMIC[tiab] OR "Europe"[Mesh] OR "Australia"[Mesh] OR "Asia"[Mesh] OR "Africa"[Mesh] OR "Mexico"[Mesh] OR "Islands"[Mesh] OR "Central America"[Mesh] OR "Latin America"[Mesh] OR "South America"[Mesh]) NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))	6,174
#6	Filters	Filters: Language: English; Publication Dates: 2008-2021	4,718

Database: Business Source Premier

Vendor: EBSCO

Date of Search: 5/11/2021

Limits Used: Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language:

English Total = 1,044

Search #	Concept	Search String	N
#1	Income	(DE "SOCIOECONOMIC factors") OR socioeconomic* OR socioeconomic* OR "social factor*" OR "social condition*" OR (DE "POVERTY") OR poverty OR "vulnerable population*" OR "underserved population*" OR "disadvantaged population*" OR (DE "INCOME") OR income* OR "race factor*" OR (DE "ECONOMIC conditions of ethnic groups") OR "ethnic group*" OR "ethnic population*" OR "cross-cultural" OR transcultural OR "cultural characteristic*" OR "culturally diverse" OR (DE "FOOD supply") OR "food desert*" OR "food insecurit*" OR "food environment*" OR "food access" OR "corner store*" OR bodega* OR DE "FOOD cooperatives" OR "food cooperative*" OR "food store*" OR "food market*" OR (DE "GROCERY shopping") OR (DE "GROCERY industry") OR grocer* OR (DE "SUPERMARKETS") OR supermarket* OR (DE "CONVENIENCE	1,403,085

		stores") OR "convenience store*" OR "food outlet*" OR (DE "FARMERS' markets") OR "farmers market*"OR (DE "METROPOLITAN areas") OR Urban OR Rural OR neighborhood OR "Census tract" OR "census block" OR "food assistance"	
#2	Dietary Patterns	"dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "diet divers*" OR "dietary divers*"OR "diet variety" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Dietary Approaches To Stop Hypertension" OR "DASH diet*" OR "Gluten Free diet*" OR "prudent diet*" OR "Paleolithic Diet*" OR "vegetarian diet*" OR "vegan diet*" OR "healthy diet" OR "plant based diet*" OR "western diet*" OR "Nordic Diet*" OR "high-fat diet*"OR "low fat diet*"OR ("guideline adherence*" AND (diet OR dietary OR food OR beverage* OR nutrition*)) OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR kidmed OR "diet index*" OR "dietary index*" OR "food score*" OR "Med Diet Score" OR "healthy eating index"	13,149
#3	#1 AND #2		3,225
#4	Filters	Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language: English	1,044

Database: Web of Science: Core Collection

Vendor: Clarivate Analytics Date of Search: 5/11/2021

Limits Used: Years: 2008-2021; Publication Types: Articles, Early Access; Language: English

Total = 7,300

Search #	Concept	Search String	N
#1	Income	TS=(socioeconomic* OR socio-economic* OR "social factor*" OR "social condition*" OR poverty OR "residence characteristics" OR "vulnerable population*" OR "underserved population*" OR "disadvantaged population*" OR income* OR "race factor*" OR "ethnic group*" OR "ethnic population*" OR "cross-cultural" OR transcultural OR "cultural characteristic*" OR "culturally diverse" OR "food desert*" OR "food insecurit*" OR "food environment*" OR "food access" OR "corner store*" OR bodega* OR "food cooperative*" OR "food store*" OR "food market*" OR grocer* OR supermarket* OR "convenience store*" OR "food outlet*" OR "farmers market*" OR Urban OR Rural OR neighborhood OR "Census tract" OR "census block" OR "food assistance")	1,036,318
#2	Dietary Patterns	TS= ("dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*" OR "diet quality" OR "dietary quality" OR "diet divers*" OR "dietary divers*" OR "dietary variety" OR "dietary variety" OR "varied diet" OR "dietary guideline*" OR "dietary recommendation*" OR "dietary intake*" OR "eating style*" OR "Mediterranean Diet*" OR "Dietary Approaches To Stop Hypertension" OR "DASH diet*" OR "Gluten Free diet*" OR "prudent diet*" OR "Paleolithic Diet*" OR "vegetarian diet*" OR "vegan diet*" OR "healthy diet" OR "plant based diet*" OR "western diet*" OR "Nordic Diet*" OR "high-fat diet*" OR "low fat diet*" OR ("guideline adherence*" AND (diet OR dietary OR food OR beverage* OR nutrition*)) OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR kidmed OR "diet index*" OR "dietary	122,259

		index*" OR "food score*" OR "Med Diet Score" OR "healthy eating index")	
#3	#1 AND #2		11,878
#4	Non-United States Excludes	CU=("developing countr*" OR "under developed nation*" OR "low i ncome countr*" OR "middle income countr*" OR "low-middle income countr*" OR LMIC OR Europe OR Australia OR Asia OR Africa OR Mexico OR Island s OR "Central America" OR "Latin America" OR "South America")	2,040,699
#5	#3 NOT #4		10,403
#6	Publication Excludes	TS=(editorial OR commentary OR "conference abstract*" OR "conference proceeding*"[tiab] OR "retraction of publication" OR "retract ed publication" OR corrigenda[tiab] OR corrigendum[tiab] OR errat a OR erratum OR "case reports") OR TI=("systematic review*" OR "meta-analysis" OR "meta analyses" OR protocol OR protocols OR "retraction notice" OR "case report" OR "case series")	710,063
#7	#5 NOT #6		10,151
#8		Years: 2008-2021; Publication Types: Articles, Early Access; Language: English	7,300

Grey Literature Search

Google Scholar

Google Scholar's search has a character limit of 256. To accommodate all of the unique terms in this search strategy, the search has been split and run as three searches.

Search A

(Income OR resources OR poverty OR socioeconomic OR urban OR neighborhood) AND ("dietary pattern" OR "food pattern" OR "diet quality" OR "dietary diversity" OR "diet variety" OR "dietary guideline" OR "dietary recommendation" OR "dietary intake" OR "eating style")

Limits: Date Published: 2008-2021; Date Searched: 5/17/2021 Results: 80, limited to 8 pages

Search B

(Income OR resources OR poverty OR socioeconomic OR urban OR neighborhood)AND ("Mediterranean Diet" OR "Dietary Approaches To Stop Hypertension" OR "DASH diet" OR "western diet" OR "Nordic diet")

Limits: Date Published: 2008-2021; Date Searched: 5/17/2021 Results: 20, limited to 2 pages

Search C

(Income OR resources OR poverty OR socioeconomic OR urban OR neighborhood) AND ("Gluten Free diet" OR "prudent diet" OR "Paleolithic Diet" OR "vegetarian diet" OR "vegan diet" OR "healthy diet" OR "plant based diet")

Limits: Date Published: 2008-2021; Date Searched: 5/17/2021 Results: 20, limited to 2 pages

Total: 120

Google

Google limits queries to 32 words (from Google notification, 5/17/21). To accommodate all of the unique terms in this search strategy, the search has been split and run as three searches.

Search A

site:.gov AND (Income OR resources OR poverty OR socioeconomic OR urban OR neighborhood) AND ("dietary pattern" OR "food pattern" OR "diet quality" OR "dietary diversity" OR "diet variety" OR "dietary guideline" OR "dietary recommendation" OR "dietary intake" OR "eating style")

Limits: Similar results omitted Date Searched: 5/17/2021

Results: 12

Search B

site:.gov AND (Income OR resources OR poverty OR socioeconomic OR urban OR neighborhood) AND ("Mediterranean Diet" OR "Dietary Approaches To Stop Hypertension" OR "DASH diet" OR "western diet" OR "Nordic diet")

Limits: Similar results omitted Date Searched: 5/17/2021 Results: 10, limited to 1 page

Search C

site:.gov AND (Income OR resources OR poverty OR socioeconomic OR urban OR neighborhood) AND ("Gluten Free diet" OR "prudent diet" OR "Paleolithic Diet" OR "vegetarian diet" OR "vegan diet" OR "healthy diet" OR "plant based diet")

Limits: Similar results omitted Date Searched: 5/17/2021 Results: 20, limited to 2 pages

Total: 42

AgEcon

Any of the words: Income resources poverty socioeconomic urban neighborhood

Any of the words: "dietary pattern" "food pattern" "diet quality" "dietary diversity" "diet variety" "dietary guideline" "dietary recommendation" "dietary intake" "eating style" "Mediterranean Diet" "Dietary Approaches To Stop Hypertension" "DASH diet" "western diet" "Nordic diet" OR "Gluten Free diet" "prudent diet" "Paleolithic Diet" "vegetarian diet" "vegan diet" "healthy diet" "plant based diet"

Limits: added since 2008 Date Searched: 5/17/2021

Results: 50, results are limited to 5 pages

Results after Deduplication:

• Google Scholar: 120

Google: 40

AgEcon: 59

Appendix 2-b: Excluded articles for the rapid review on income and HEI

The following table lists the articles excluded after full-text screening for this rapid review question. At least 1 reason for exclusion is provided for each article, though this may not reflect all possible reasons. Information about articles excluded after title and abstract screening is available upon request.

#	Citation	Exclusion rationale
1	. Access to Foods that Support Healthy Eating Patterns Healthy People 2020. 2021.	Study design
2	. Appendix E-2.37 health.gov. 2021.	Study design
3	. Eating Vegetarian Nutrition.gov. 2021.	Study design
4	. Food Pattern Modeling Dietary Guidelines for Americans. 2021.	Study design; Publication Status
5	. Multicultural Healthy Diet to Reduce Cognitive Decline & Alzheimer's Disease Risk National Institute on Aging. 2021.	Study design; Publication Status
6	. Promote Healthy Diet and Physical Activity Behavior Performance.gov. 2021.	Study design
7	. The Mediterranean Eating Plan Evidence-Based Cancer Control Programs (EBCCP). 2021.	Study design
8	. USDA ERS - Diet Quality & Nutrition. 2021.	Study design
9	. Vegetarian Diet. 2021.	Intervention/ Exposure; Study design
10	. Vegetarian Nutrition Food and Nutrition Information Center NAL USDA. 2021.	Study design
11	Aggarwal, A., Drewnowski, A Plant- and animal-protein diets in relation to sociodemographic drivers, quality, and cost: findings from the Seattle Obesity Study. Am J Clin Nutr. 2019. 110:451-460	Intervention/ Exposure
12	Aggarwal, A., Monsivais, P., Cook, A. J., Drewnowski, A Does diet cost mediate the relation between socioeconomic position and diet quality?. Eur J Clin Nutr. 2011. 65:1059-66	Outcome
13	Alexis, T. D., Unruh, D., Wang, W., Dave, J. M., Miketinas, D. C., Chen, T. A., Moore, C. E Implementation of a food scholarship program improves nutrient intake and dietary quality of college students. J Am Coll Health. 2020.:1-8	Intervention/ Exposure
14	Anderson, S. E.,Kaye, G.,Andridge, R.,Smathers, C.,Peng, J.,Pirie, P Interrelationships of More Healthful and Less Healthful Aspects of Diet Quality in a Low-Income Community Sample of Preschool-Aged Children. Matern Child Health J. 2015. 19:2663-72	Intervention/ Exposure
15	Anderson, S. E.,Ramsden, M.,Kaye, G Diet qualities: healthy and unhealthy aspects of diet quality in preschool children. Am J Clin Nutr. 2016. 103:1507-13	Data date range
16	Andreyeva, T., Tripp, A. S The healthfulness of food and beverage purchases after the federal food package revisions: The case of two New England states. Prev Med. 2016. 91:204-210	Outcome
17	Appelhans, B. M., French, S. A., Tangney, C. C., Powell, L. M., Wang, Y To what extent do food purchases reflect shoppers' diet quality and nutrient intake?. Int J Behav Nutr Phys Act. 2017; 14 (1):46.	Outcome
18	Arimond, Mary ,Wiesmann, Doris,Becquey, Elodie ,Carriquiry, Alicia ,Daniels, Melissa ,Deitchler, Megan ,Fanou, Nadia,Ferguson, Elaine ,Joseph, Maria ,Kennedy, Gina ,Martin-Prével, Yves ,Elin Torheim, Liv . Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets in Resource-Poor Areas: Summary of Results from Five Sites. 2011.	Country
19	Auchincloss, A. H.,Riolo, R. L.,Brown, D. G.,Cook, J.,Diez Roux, A. V An agent-based model of income inequalities in diet in the context of residential segregation. Am J Prev Med. 2011. 40:303-11	Outcome

#	Citation	Exclusion rationale
20	Baraldi, L. G., Martinez Steele, E., Canella, D. S., Monteiro, C. A Consumption of ultra- processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study. BMJ Open. 2018. 8:e020574	Outcome
21	Basu, S.,Gardner, C. D.,White, J. S.,Rigdon, J.,Carroll, M. M.,Akers, M.,Seligman, H. K Effects Of Alternative Food Voucher Delivery Strategies On Nutrition Among Low-Income Adults. Health Aff (Millwood). 2019. 38:577-584	Intervention/ Exposure
22	Bauer, K. W., Widome, R., Himes, J. H., Smyth, M., Rock, B. H., Hannan, P. J., Story, M. High food insecurity and its correlates among families living on a rural American Indian Reservation. Am J Public Health. 2012. 102:1346-52	Data date range
23	Beasley, J. M., Sevick, M. A., Kirshner, L., Mangold, M., Chodosh, J Congregate Meals: Opportunities to Help Vulnerable Older Adults Achieve Diet and Physical Activity Recommendations. J Frailty Aging. 2018. 7:182-186	Outcome
24	Bedrick, B. S., Eskew, A. M., Chavarro, J. E., Jungheim, E. S Dietary Patterns, Physical Activity, and Socioeconomic Associations in a Midwestern Cohort of Healthy Reproductive-Age Women. Matern Child Health J. 2020. 24:1299-1307	Intervention/ Exposure
25	Bergmans, R. S., Palta, M., Robert, S. A., Berger, L. M., Ehrenthal, D. B., Malecki, K. M Associations between Food Security Status and Dietary Inflammatory Potential within Lower-Income Adults from the United States National Health and Nutrition Examination Survey, Cycles 2007 to 2014. Journal of the Academy of Nutrition and Dietetics. 2018. 118:994-1005	Intervention/ Exposure
26	Bernstein, A. M., Bloom, D. E., Rosner, B. A., Franz, M., Willett, W. C Relation of food cost to healthfulness of diet among US women. American Journal of Clinical Nutrition. 2010. 92:1197-1203	Data date range
27	Beydoun, M. A., Wang, Y Do nutrition knowledge and beliefs modify the association of socio- economic factors and diet quality among US adults?. Prev Med. 2008. 46:145-53	Data date range
28	Beydoun, M. A., Wang, Y How do socio-economic status, perceived economic barriers and nutritional benefits affect quality of dietary intake among US adults?. Eur J Clin Nutr. 2008. 62:303-13	Data date range
29	Bishop, N. J., Zuniga, K. E., Ramirez, C. M Latent profile analysis of dietary intake in a community-dwelling sample of older Americans. Public Health Nutr. 2020. 23:243-253	Outcome
30	Blake, C. E., Wethington, E., Farrell, T. J., Bisogni, C. A., Devine, C. M Behavioral contexts, food-choice coping strategies, and dietary quality of a multiethnic sample of employed parents. J Am Diet Assoc. 2011. 111:401-7	Intervention/ Exposure; Data date range
31	Bleiweiss-Sande, R., Sacheck, J. M., Chui, K., Goldberg, J. P., Bailey, C., Evans, E. W Processed food consumption is associated with diet quality, but not weight status, in a sample of low-income and ethnically diverse elementary school children. Appetite. 2020. 151:104696	Comparator
32	Bodnar, L. M., Simhan, H. N., Parker, C. B., Meier, H., Mercer, B. M., Grobman, W. A., Haas, D. M., Wing, D. A., Hoffman, M. K., Parry, S., Silver, R. M., Saade, G. R., Wapner, R., Iams, J. D., Wadhwa, P. D., Elovitz, M., Peaceman, A. M., Esplin, S., Barnes, S., Reddy, U. M Racial or Ethnic and Socioeconomic Inequalities in Adherence to National Dietary Guidance in a Large Cohort of US Pregnant Women. J Acad Nutr Diet. 2017. 117:867-877.e3	Intervention/ Exposure
33	Boehm, R., Ver Ploeg, M., Wilde, P. E., Cash, S. B Greenhouse gas emissions, total food spending and diet quality by share of household food spending on red meat: results from a nationally representative sample of US households. Public Health Nutr. 2019. 22:1794-1806	Intervention/ Exposure
34	Boone-Heinonen, J., Gordon-Larsen, P., Kiefe, C. I., Shikany, J. M., Lewis, C. E., Popkin, B. M Fast food restaurants and food stores: longitudinal associations with diet in young to middle-aged adults: the CARDIA study. Arch Intern Med. 2011. 171:1162-70	Data date range
35	Bottino, C. J., Fleegler, E. W., Cox, J. E., Rhodes, E. T The Relationship Between Housing Instability and Poor Diet Quality Among Urban Families. Acad Pediatr. 2019. 19:891-898	Intervention/ Exposure
36	Boutté, A. K.,Turner-McGrievy, G. M.,Eberth, J. M.,Wilcox, S.,Liu, J.,Kaczynski, A. T Healthy Food Density is Not Associated With Diet Quality Among Pregnant Women With Overweight/Obesity in South Carolina. J Nutr Educ Behav. 2021. 53:120-129	Intervention/ Exposure

#	Citation	Exclusion rationale
37	Boynton, A., Neuhouser, M. L., Sorensen, B., McTiernan, A., Ulrich, C. M Predictors of diet quality among overweight and obese postmenopausal women. J Am Diet Assoc. 2008. 108:125-30	Data date range
38	Brantley, K. D., Hartman, T. J., Patel, A. V., Gapstur, S. M., Flanders, W. D., McCullough, M. L Test-Retest Reproducibility of Adult-Reported High School Diet Varies among Racially and Ethnically Diverse US Men and Women. J Nutr. 2018. 148:599-606	Intervention/ Exposure
39	Brewster, P. J., Durward, C. M., Hurdle, J. F., Stoddard, G. J., Guenther, P. M The Grocery Purchase Quality Index-2016 Performs Similarly to the Healthy Eating Index-2015 in a National Survey of Household Food Purchases. J Acad Nutr Diet. 2019. 119:45-56	Outcome (Purchase data)
40	Bruening, M.,McClain, D.,Moramarco, M.,Reifsnider, E The Role of SNAP in Home Food Availability and Dietary Intake among WIC Participants Facing Unstable Housing. Public Health Nurs. 2017. 34:219-228	Outcome
41	Bruening, M.,van Woerden, I.,Todd, M.,Laska, M. N Hungry to learn: the prevalence and effects of food insecurity on health behaviors and outcomes over time among a diverse sample of university freshmen. Int J Behav Nutr Phys Act. 2018. 15:9	Outcome
42	Camacho-Rivera, M.,Rosenbaum, E.,Yama, C.,Chambers, E Low-Income Housing Rental Assistance, Perceptions of Neighborhood Food Environment, and Dietary Patterns among Latino Adults: the AHOME Study. J Racial Ethn Health Disparities. 2017. 4:346-353	Outcome
43	Campbell, S.,Chen, J. J.,Boushey, C. J.,Eicher-Miller, H.,Zhu, F. Q.,Fialkowski, M. K Food Security and Diet Quality in Native Hawaiian, Pacific Islander, and Filipino Infants 3 to 12 Months of Age. Nutrients. 2020. 12:18	Intervention/ Exposure
44	Cantor, J.,Beckman, R.,Collins, R. L.,Dastidar, M. G.,Richardson, A. S.,Dubowitz, T SNAP Participants Improved Food Security And Diet After A Full-Service Supermarket Opened In An Urban Food Desert. Health Aff (Millwood). 2020. 39:1386-1394	Intervention/ Exposure
45	Caspi, C. E.,Lenk, K.,Pelletier, J. E.,Barnes, T. L.,Harnack, L.,Erickson, D. J.,Laska, M. N Association between store food environment and customer purchases in small grocery stores, gas-marts, pharmacies and dollar stores. Int J Behav Nutr Phys Act. 2017. 14:76	Intervention/ Exposure
46	Caspi, C. E., Lenk, K., Pelletier, J. E., Barnes, T. L., Harnack, L., Erickson, D. J., Laska, M. N Food and beverage purchases in corner stores, gas-marts, pharmacies and dollar stores. Public Health Nutr. 2017. 20:2587-2597	Intervention/ Exposure
47	Chang, Y.,Hickman, H Food Insecurity and Perceived Diet Quality Among Low-Income Older Americans with Functional Limitations. J Nutr Educ Behav. 2018. 50:476-484	Intervention/ Exposure
48	Chen, L.,Zhu, H.,Gutin, B.,Dong, Y Race, Gender, Family Structure, Socioeconomic Status, Dietary Patterns, and Cardiovascular Health in Adolescents. Curr Dev Nutr. 2019. 3:nzz117	Intervention/ Exposure
49	Chen, M., Creger, T., Howard, V., Judd, S. E., Harrington, K. F., Fontaine, K. R Geospatial analysis of Mediterranean diet adherence in the United States. Public Health Nutr. 2020. :1-9	Intervention/ Exposure
50	Chen, Y.,Lin, B. H.,Mancino, L.,Ploeg, M. V.,Zhen, C Nutritional quality of retail food purchases is not associated with participation in the Supplemental Nutrition Assistance Program for nutrition-oriented households. Plos One. 2020. 15:14	Outcome (Purchase data)
51	Chenarides, Lauren, Grebitus, Carola, Lusk, Jayson L., Printezis, Iryna. Food consumption behavior during the COVID-19 pandemic. Agribusiness. 2021. 37:44-81	Intervention/ Exposure; Outcome
52	Cleary, Rebecca, Bonanno, Alessandro, Ghazaryan, Armen, Bellows, Laura, McCloskey, Morgan. School meals and quality of household food acquisitions. Applied Economic Perspectives & Policy. 2021; (#issue#):1. #doi#.	Outcome (Purchase data)
53	Clements, Kenneth W.,Si, Jiawei. ENGEL'S LAW, DIET DIVERSITY, AND THE QUALITY OF FOOD CONSUMPTION. American Journal of Agricultural Economics. 2018. 100:1-22	Study design; Country
54	Collins, A. M.,Klerman, J. A Improving Nutrition by Increasing Supplemental Nutrition Assistance Program Benefits. Am J Prev Med. 2017. 52:S179-s185	Outcome
55	Cooksey Stowers, K., Jiang, Q., Atoloye, A., Lucan, S., Gans, K Racial Differences in Perceived Food Swamp and Food Desert Exposure and Disparities in Self-Reported Dietary Habits. Int J Environ Res Public Health. 2020. 17:	Outcome

#	Citation	Exclusion rationale
56	Côté-Lussier, C.,Kakinami, L.,Danieles, P. K Ego-centered relative neighborhood deprivation and reported dietary habits among youth. Appetite. 2019. 132:267-274	Country
57	Courtemanche, Charles, Denteh, Augustine, Tchernis, Rusty. Estimating the Associations between SNAP and Food Insecurity, Obesity, and Food Purchases with Imperfect Administrative Measures of Participation. Southern Economic Journal. 2019. 86:202-228	Comparator
58	Crane, M. M., Tangney, C. C., French, S. A., Wang, Y., Appelhans, B. M Gender Comparison of the Diet Quality and Sources of Food Purchases Made by Urban Primary Household Food Purchasers. J Nutr Educ Behav. 2019. 51:199-204	Intervention/ Exposure
59	Crews, D. C., Kuczmarski, M. F., Miller, E. R., 3rd, Zonderman, A. B., Evans, M. K., Powe, N. R Dietary habits, poverty, and chronic kidney disease in an urban population. J Ren Nutr. 2015. 25:103-10	Outcome
60	Cullen, K. W., Chen, T. A The contribution of the USDA school breakfast and lunch program meals to student daily dietary intake. Prev Med Rep. 2017. 5:82-85	Intervention/ Exposure; Outcome
61	Cummins, Steven, Flint, Ellen, Matthews, Stephen A New Neighborhood Grocery Store Increased Awareness Of Food Access But Did Not Alter Dietary Habits Or Obesity. Health Affairs. 2014. 33:283-291	Outcome
62	Cutler, G. J., Flood, A., Hannan, P., Neumark-Sztainer, D Multiple sociodemographic and socioenvironmental characteristics are correlated with major patterns of dietary intake in adolescents. J Am Diet Assoc. 2011. 111:230-40	Data date range
63	Dammann, K. W., Smith, C Race, Homelessness, and Other Environmental Factors Associated with the Food-Purchasing Behavior of Low-Income Women. Journal of the American Dietetic Association. 2010. 110:1351-1356	Outcome
64	Darmon, N.,Lacroix, A.,Muller, L.,Ruffieux, B Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int J Behav Nutr Phys Act. 2014. 11:66	Country
65	Darmon, N., Lacroix, A., Muller, L., Ruffieux, B Food Price Policies May Improve Diet but Increase Socioeconomic Inequalities in Nutrition. Hidden Hunger: Malnutrition and the First 1,000 Days of Life: Causes, Consequences and Solutions. 2016. 115:36-45	Country
66	Davis, N. J., Schechter, C. B., Ortega, F., Rosen, R., Wylie-Rosett, J., Walker, E. A Dietary patterns in Blacks and Hispanics with diagnosed diabetes in New York City's South Bronx. Am J Clin Nutr. 2013. 97:878-85	Outcome
67	Dennisuk, L. A., Coutinho, A. J., Suratkar, S., Surkan, P. J., Christiansen, K., Riley, M., Anliker, J. A., Sharma, S., Gittelsohn, J. Food expenditures and food purchasing among low-income, urban, African-American youth. Am J Prev Med. 2011. 40:625-8	Outcome
68	Deshmukh-Taskar, P. R.,O'Neil, C. E.,Nicklas, T. A.,Yang, S. J.,Liu, Y.,Gustat, J.,Berenson, G. S Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: the Bogalusa Heart Study. Public Health Nutr. 2009. 12:2493-503	Data date range
69	Dhakal, C. K.,Khadka, S Heterogeneities in Consumer Diet Quality and Health Outcomes of Consumers by Store Choice and Income. Nutrients. 2021. 13	Outcome (Purchase data)
70	Dharod, J. M., Croom, J. E., Sady, C. G Food Insecurity: Its Relationship to Dietary Intake and Body Weight among Somali Refugee Women in the United States. Journal of Nutrition Education and Behavior. 2013. 45:47-53	Outcome
71	Diep, C. S.,Leung, R.,Thompson, D. I.,Gor, B. J.,Baranowski, T Culture and Diet Among Chinese American Children Aged 9-13 Years: A Qualitative Study. Journal of Nutrition Education and Behavior. 2017. 49:275-284	Outcome
72	Dondero, M., Van Hook, J Generational status, neighborhood context, and mother-child resemblance in dietary quality in Mexican-origin families. Soc Sci Med. 2016. 150:212-20	Intervention/ Exposure
73	Dubowitz, T.,Ghosh-Dastidar, M.,Cohen, D. A.,Beckman, R.,Steiner, E. D.,Hunter, G. P.,Flórez, K. R.,Huang, C.,Vaughan, C. A.,Sloan, J. C.,Zenk, S. N.,Cummins, S.,Collins, R. L Diet And Perceptions Change With Supermarket Introduction In A Food Desert, But Not Because Of Supermarket Use. Health Aff (Millwood). 2015. 34:1858-68	Intervention/ Exposure

#	Citation	Exclusion rationale
74	Dubowitz, T.,Zenk, S. N.,Ghosh-Dastidar, B.,Cohen, D. A.,Beckman, R.,Hunter, G.,Steiner, E. D.,Collins, R. L Healthy food access for urban food desert residents: examination of the food environment, food purchasing practices, diet and BMI. Public Health Nutr. 2015. 18:2220-30	Intervention/ Exposure
75 	Duffy, P.,Zizza, C.,Jacoby, J.,Tayie, F. A Diet quality is low among female food pantry clients in Eastern Alabama. J Nutr Educ Behav. 2009. 41:414-9	Data date range
76	Egeland, G. M., Williamson-Bathory, L., Johnson-Down, L., Sobol, I Traditional food and monetary access to market-food: correlates of food insecurity among Inuit preschoolers. Int J Circumpolar Health. 2011. 70:373-83	Country
77	Eicher-Miller, H. A., Boushey, C. J., Bailey, R. L., Yang, Y. J Frequently Consumed Foods and Energy Contributions among Food Secure and Insecure U.S. Children and Adolescents. Nutrients. 2020. 12	Outcome
78	Eicher-Miller, H. A., Fulgoni, V. L., 3rd, Keast, D. R Energy and Nutrient Intakes from Processed Foods Differ by Sex, Income Status, and Race/Ethnicity of US Adults. J Acad Nutr Diet. 2015. 115:907-18.e6	Outcome
79	Eicher-Miller, H. A., Khanna, N., Boushey, C. J., Gelfand, S. B., Delp, E. J Temporal Dietary Patterns Derived among the Adult Participants of the National Health and Nutrition Examination Survey 1999-2004 Are Associated with Diet Quality. J Acad Nutr Diet. 2016. 116:283-91	Data date range
80	Epstein, L. H., Finkelstein, E., Raynor, H., Nederkoorn, C., Fletcher, K. D., Jankowiak, N., Paluch, R. A Experimental analysis of the effect of taxes and subsides on calories purchased in an online supermarket. Appetite. 2015. 95:245-51	Intervention/ Exposure
81	Ervin, R. B Healthy Eating Index scores among adults, 60 years of age and over, by sociodemographic and health characteristics: United States, 1999-2002. Adv Data. 2008. :1-16	Data date range
82	Esmaili, H.,Mohd Yusof, R.,Abu Saad, H.,Ghaemian, A.,Darani Zad, N Association of dietary patterns with sociodemographic and health-related factors among coronary artery disease (CAD) patients. Ecol Food Nutr. 2015. 54:4-19	Country
83	Estradé, M., Trude, A. C. B., Pardilla, M., Jock, B. W. I., Swartz, J., Gittelsohn, J Sociodemographic and Psychosocial Factors Associated With Diet Quality in 6 Rural Native American Communities. J Nutr Educ Behav. 2021. 53:10-19	Comparator
84	Fabian, C.,Pagan, I.,Rios, J. L.,Betancourt, J.,Cruz, S. Y.,Gonzalez, A. M.,Palacios, C.,Gonzalez, M. J.,Rivera-Soto, W. T Dietary Patterns and their Association with Sociodemographic Characteristics and Perceived Academic Stress of College Students in Puerto Rico. Puerto Rico Health Sciences Journal. 2013. 32:36-43	Outcome
85	Fan, Linlin, Baylis, Kathy, Gundersen, Craig, Ver Ploeg, Michele. Does a Nutritious Diet Cost More in Food Deserts?. 2016.:46	Outcome
86	Fanelli Kuczmarski, M.,Beydoun, M. A.,Cotugna, N.,Schwenk, E.,Evans, M. K.,Zonderman, A. B The Relationship of Diet Quality with Proportion of Daily Energy Contributed by Sandwiches Varies by Age over Adulthood in Racially and Socioeconomically Diverse Adults. Nutrients. 2020. 12	Comparator
87	Fanelli Kuczmarski, M.,Brewer, B. C.,Rawal, R.,Pohlig, R. T.,Zonderman, A. B.,Evans, M. K Aspects of Dietary Diversity Differ in Their Association with Atherosclerotic Cardiovascular Risk in a Racially Diverse US Adult Population. Nutrients. 2019; 11 (5) Fanelli Kuczmarski, M.,Brewer, B. C.,Rawal, R.,Pohlig, R. T.,Zonderman, A. B.,Evans, M. K Aspects of Dietary Diversity Differ in Their Association with Atherosclerotic Cardiovascular Risk in a Racially Diverse US Adult Population. Nutrients. 2019; 11 (5).	Outcome
88	Fanelli Kuczmarski, M.,Hossain, S.,Beydoun, M. A.,Maldonando, A.,Evans, M. K.,Zonderman, A. B Association of DASH and Depressive Symptoms with BMI over Adulthood in Racially and Socioeconomically Diverse Adults Examined in the HANDLS Study. Nutrients. 2019. 11	Intervention/ Exposure
89	Fanelli Kuczmarski, M.,Stave Shupe, E.,Pohlig, R. T.,Rawal, R.,Zonderman, A. B.,Evans, M. K A Longitudinal Assessment of Diet Quality and Risks Associated with Malnutrition in Socioeconomic and Racially Diverse Adults. Nutrients. 2019. 11:	Outcome
90	Fang Zhang, F.,Liu, J.,Rehm, C. D.,Wilde, P.,Mande, J. R.,Mozaffarian, D Trends and Disparities in Diet Quality Among US Adults by Supplemental Nutrition Assistance Program Participation Status. JAMA Netw Open. 2018. 1:e180237	Outcome

#	Citation	Exclusion rationale
91	Farmer, N., Wallen, G. R., Yang, L., Middleton, K. R., Kazmi, N., Powell-Wiley, T. M Household Cooking Frequency of Dinner Among Non-Hispanic Black Adults is Associated with Income and Employment, Perceived Diet Quality and Varied Objective Diet Quality, HEI (Healthy Eating Index): NHANES Analysis 2007-2010. Nutrients. 2019. 11:	Comparator
92	Ferranti, E. P., Dunbar, S. B., Higgins, M., Dai, J., Ziegler, T. R., Frediani, J. K., Reilly, C., Brigham, K. L Psychosocial factors associated with diet quality in a working adult population. Res Nurs Health. 2013; 36 (3):242-56. #doi#.	Intervention/ Exposure
93	Ferranti, E. P., Narayan, K. M., Reilly, C. M., Foster, J., McCullough, M., Ziegler, T. R., Guo, Y., Dunbar, S. B Dietary self-efficacy predicts AHEI diet quality in women with previous gestational diabetes. Diabetes Educ. 2014. 40:688-99	Intervention/ Exposure
94	Fitzgerald, N., Damio, G., Segura-Perez, S., Perez-Escamilla, R Nutrition knowledge, food label use, and food intake patterns among Latinas with and without type 2 diabetes. Journal of the American Dietetic Association. 2008. 108:960-967	Outcome
95	Ford, D. W., Hartman, T. J., Still, C., Wood, C., Mitchell, D. C., Bailey, R., Smiciklas-Wright, H., Coffman, D. L., Jensen, G. L Diet quality and body mass index are associated with health care resource use in rural older adults. J Acad Nutr Diet. 2014. 114:1932-8	Intervention/ Exposure
96	Forrestal, S., Potamites, E., Guthrie, J., Paxton, N Associations among Food Security, School Meal Participation, and Students' Diet Quality in the First School Nutrition and Meal Cost Study. Nutrients. 2021. 13:	Intervention/ Exposure
97	Fowles, E. R., Stang, J., Bryant, M., Kim, S Stress, depression, social support, and eating habits reduce diet quality in the first trimester in low-income women: a pilot study. J Acad Nutr Diet. 2012. 112:1619-25	Intervention/ Exposure
98	Franckle, R. L., Moran, A., Hou, T., Blue, D., Greene, J., Thorndike, A. N., Polacsek, M., Rimm, E. B Transactions at a Northeastern Supermarket Chain: Differences by Supplemental Nutrition Assistance Program Use. American Journal of Preventive Medicine. 2017. 53:E131-E138	Outcome
99	Franckle, R. L., Thorndike, A. N., Moran, A. J., Hou, T., Blue, D., Greene, J. C., Bleich, S. N., Block, J. P., Polacsek, M., Rimm, E. B Supermarket Purchases Over the Supplemental Nutrition Assistance Program Benefit Month: A Comparison Between Participants and Nonparticipants. Am J Prev Med. 2019. 57:800-807	Outcome
100	Franco, M., Diez-Roux, A. V., Nettleton, J. A., Lazo, M., Brancati, F., Caballero, B., Glass, T., Moore, L. V Availability of healthy foods and dietary patterns: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr. 2009. 89:897-904	Data date range
101	Fransen, H. P.,Boer, J. M. A.,Beulens, J. W. J.,de Wit, G. A.,Bueno-de-Mesquita, H. B.,Hoekstra, J.,May, A. M.,Peeters, P. H. M Associations between lifestyle factors and an unhealthy diet. Eur J Public Health. 2017. 27:274-278	Country; Data date range
102	Freedman, D. A.,Bell, B. A.,Clark, J.,Ngendahimana, D.,Borawski, E.,Trapl, E.,Pike, S.,Sehgal, A. R Small Improvements in an Urban Food Environment Resulted in No Changes in Diet Among Residents. J Community Health. 2021. 46:1-12	Intervention/ Exposure
103	French, S. A.,Rydell, S. A.,Mitchell, N. R.,Oakes, J. M.,Elbel, B.,Harnack, L Financial incentives and purchase restrictions in a food benefit program affect the types of foods and beverages purchased: results from a randomized trial. International Journal of Behavioral Nutrition and Physical Activity. 2017. 14:10	Outcome
104	French, S. A., Tangney, C. C., Crane, M. M., Wang, Y., Appelhans, B. M Nutrition quality of food purchases varies by household income: the SHoPPER study. BMC Public Health. 2019. 19:231	Outcome (Purchase data)
105	Frongillo, E. A., Wolfe, W. S Impact of participation in Home-Delivered Meals on nutrient intake, dietary patterns, and food insecurity of older persons in New York state. J Nutr Elder. 2010. 29:293-310	Outcome; Data date range
106	Garner, J. A., Jilcott Pitts, S. B., Hanson, K. L., Ammerman, A. S., Kolodinsky, J., Sitaker, M. H., Seguin-Fowler, R. A Making community-supported agriculture accessible to low-income families: findings from the Farm Fresh Foods for Healthy Kids process evaluation. Transl Behav Med. 2021. 11:754-763	Intervention/ Exposure

#	Citation	Exclusion rationale
107	Gavrieli, A.,Farr, O. M.,Davis, C. R.,Crowell, J. A.,Mantzoros, C. S Early life adversity and/or posttraumatic stress disorder severity are associated with poor diet quality, including consumption of trans fatty acids, and fewer hours of resting or sleeping in a US middle-aged population: A cross-sectional and prospective study. Metabolism. 2015. 64:1597-610	Intervention/ Exposure
108	Gills, S. M. H., Auld, G., Hess, A., Guenther, P. M., Baker, S. S Positive Change in Healthy Eating Scores Among Adults With Low Income After Expanded Food and Nutrition Education Program Participation. J Nutr Educ Behav. 2021.	Comparator
109	Golan, Elise H., Stewart, Hayden, Kuchler, Fred, Dong, Diansheng. Can Low-Income Americans Afford a Healthy Diet?. 2008.:8	Outcome
110	Greatwood, H. C., Daly-Smith, A., McGregor, S., McKenna, J Year 7 dietary intake: a comparison of two schools with middle-high socio-economic status. J Hum Nutr Diet. 2013. 26:563-9	Country
111	Greenfield, Russell. The DASH Diet. 2020	Study design
112	Gregory, Christian ,Ver Ploeg, Michele, Andrews, Margaret ,Coleman-Jensen, Alisha. Supplemental Nutrition Assistance Program (SNAP) Participation Leads to Modest Changes in Diet Quality. 2013; 36.	Outcome
113	Guenther, P. M., Luick, B. R Improved Overall Quality of Diets Reported by Expanded Food and Nutrition Education Program Participants in the Mountain Region. J Nutr Educ Behav. 2015. 47:421-6.e1	Intervention/ Exposure; Comparator
114	Gupta, S.,Rose, C. M.,Buszkiewicz, J.,Ko, L. K.,Mou, J.,Cook, A.,Aggarwal, A.,Drewnowski, A Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: findings from the Seattle Obesity Study (SOS) III. Br J Nutr. 2020. :1-9	Comparator
115	Gupta, S.,Rose, C. M.,Buszkiewicz, J.,Otten, J.,Spiker, M. L.,Drewnowski, A Inedible Food Waste Linked to Diet Quality and Food Spending in the Seattle Obesity Study SOS III. Nutrients. 2021. 13:	Intervention/ Exposure
116	Guthrie, J. F., Anater, A. S., Hampton, J. C., Catellier, D. J., Eldridge, A. L., Johnson, W. L., Quann, E. E The Special Supplemental Nutrition Program for Women, Infants, and Children is Associated with Several Changes in Nutrient Intakes and Food Consumption Patterns of Participating Infants and Young Children, 2008 Compared with 2016. Journal of Nutrition. 2020. 150:2985-2993	Outcome
117	Guthrie, J. F., Catellier, D. J., Jacquier, E. F., Eldridge, A. L., Johnson, W. L., Lutes, A. C., Anater, A. S., Quann, E. E WIC and non-WIC Infants and Children Differ in Usage of Some WIC-Provided Foods. J Nutr. 2018. 148:1547s-1556s	Outcome
118	Guthrie, Joanne F., Variyam, Jayachandran N Can Food Stamps Do More to Improve Food Choices? An Economic Perspective-Nutrition Information: Can It Improve the Diets of Low-Income Households?. 2007; 4.	Intervention/ Exposure
119	Harnack, L.,Oakes, J. M.,Elbel, B.,Beatty, T.,Rydell, S.,French, S Effects of Subsidies and Prohibitions on Nutrition in a Food Benefit Program: A Randomized Clinical Trial. JAMA Intern Med. 2016. 176:1610-1618	Intervention/ Exposure
120	Harrington, J., Fitzgerald, A. P., Layte, R., Lutomski, J., Molcho, M., Perry, I. J Sociodemographic, health and lifestyle predictors of poor diets. Public Health Nutrition. 2011. 14:2166-2175	Country
121	Hattori, A., An, R., Sturm, R Neighborhood food outlets, diet, and obesity among California adults, 2007 and 2009. Prev Chronic Dis. 2013. 10:E35	Outcome
122	Hidaka, B. H., Kerling, E. H., Thodosoff, J. M., Sullivan, D. K., Colombo, J., Carlson, S. E Dietary patterns of early childhood and maternal socioeconomic status in a unique prospective sample from a randomized controlled trial of Prenatal DHA Supplementation. BMC Pediatr. 2016. 16:191	Intervention/ Exposure
123	Hilmers, A., Chen, T. A., Cullen, K. W Household food insecurity and dietary intake among Mexican-American women participating in federal food assistance programs. Am J Health Promot. 2014. 28:e146-54	Outcome

#	Citation	Exclusion rationale
124	Hilmers, A., Chen, T. A., Dave, J. M., Thompson, D., Cullen, K. W Supplemental Nutrition Assistance Program participation did not help low income Hispanic women in Texas meet the dietary guidelines. Prev Med. 2014. 62:44-8	Outcome; Data date range
125	Hiza, H. A., Casavale, K. O., Guenther, P. M., Davis, C. A Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J Acad Nutr Diet. 2013. 113:297-306	Data date range
126	Hsiao, P. Y., Mitchell, D. C., Coffman, D. L., Allman, R. M., Locher, J. L., Sawyer, P., Jensen, G. L., Hartman, T. J Dietary patterns and diet quality among diverse older adults: the University of Alabama at Birmingham Study of Aging. J Nutr Health Aging. 2013. 17:19-25	Data date range
127	Hurley, K. M., Black, M. M Commercial Baby Food Consumption and Dietary Variety in a Statewide Sample of Infants Receiving Benefits from the Special Supplemental Nutrition Program for Women, Infants, and Children. Journal of the American Dietetic Association. 2010. 110:1537-1541	Outcome
128	Iacobucci, Dawn. Part II: The Marketing Research Perspective: Chapter 2: Marketing Research: Consumer BehaviorFood Purchasing and Consumption. Foundations & Trends in Marketing. 2019. 13:89-91	Intervention/ Exposure
129	Iacobucci, Dawn. Part II: The Marketing Research Perspective: Chapter 2: Marketing Research: Consumer BehaviorFood Purchasing and Consumption: 2.1: Grocery Shopping. Foundations & Trends in Marketing. 2019. 13:91-112	Study design
130	Jackson, J. A., Smit, E., Manore, M. M., John, D., Gunter, K The Family-Home Nutrition Environment and Dietary Intake in Rural Children. Nutrients. 2015. 7:9707-20	Outcome
131	Jansen, E. C., Kasper, N., Lumeng, J. C., Brophy Herb, H. E., Horodynski, M. A., Miller, A. L., Contreras, D., Peterson, K. E Changes in household food insecurity are related to changes in BMI and diet quality among Michigan Head Start preschoolers in a sex-specific manner. Soc Sci Med. 2017. 181:168-176	Intervention/ Exposure
132	Jansen, E. C., Peterson, K. E., Lumeng, J. C., Kaciroti, N., LeBourgeois, M. K., Chen, K., Miller, A. L Associations between Sleep and Dietary Patterns among Low-Income Children Attending Preschool. J Acad Nutr Diet. 2019. 119:1176-1187	Intervention/ Exposure
133	Jilcott Pitts, S. B., Keyserling, T. C., Johnston, L. F., Smith, T. W., McGuirt, J. T., Evenson, K. R., Rafferty, A. P., Gizlice, Z., Garcia, B. A., Ammerman, A. S Associations between neighborhood-level factors related to a healthful lifestyle and dietary intake, physical activity, and support for obesity prevention polices among rural adults. J Community Health. 2015. 40:276-84	Intervention/ Exposure
134	Jilcott Pitts, S. B., Wu, Q., Truesdale, K. P., Rafferty, A. P., Haynes-Maslow, L., Boys, K. A., McGuirt, J. T., Fleischhacker, S., Johnson, N., Kaur, A. P., Bell, R. A., Ammerman, A. S., Laska, M. N A four-year observational study to examine the dietary impact of the North Carolina Healthy Food Small Retailer Program, 2017-2020. Int J Behav Nutr Phys Act. 2021. 18:44	Intervention/ Exposure
135	Joyce, J. M.,Rosenkranz, R. R.,Rosenkranz, S. K Evaluation of Variability in Dietary Quality of School Lunches Meeting National School Lunch Program Guidelines by Socioeconomic Status and Rurality. Int J Environ Res Public Health. 2020. 17.	Outcome
136	Jun, S., Catellier, D. J., Eldridge, A. L., Dwyer, J. T., Eicher-Miller, H. A., Bailey, R. L Usual Nutrient Intakes from the Diets of US Children by WIC Participation and Income: Findings from the Feeding Infants and Toddlers Study (FITS) 2016. J Nutr. 2018. 148:1567s-1574s	Outcome
137	Jun, S., Cowan, A. E., Dodd, K. W., Tooze, J. A., Gahche, J. J., Eicher-Miller, H. A., Guenther, P. M., Dwyer, J. T., Potischman, N., Bhadra, A., Forman, M. R., Bailey, R. L Association of food insecurity with dietary intakes and nutritional biomarkers among US children, National Health and Nutrition Examination Survey (NHANES) 2011-2016. Am J Clin Nutr. 2021.	Intervention/ Exposure
138	Jun, S.,Zeh, M. J.,Eicher-Miller, H. A.,Bailey, R. L Children's Dietary Quality and Micronutrient Adequacy by Food Security in the Household and among Household Children. Nutrients. 2019. 11:	Intervention/ Exposure
139	Juul, F.,Simões, B. D. S.,Litvak, J.,Martinez-Steele, E.,Deierlein, A.,Vadiveloo, M.,Parekh, N Processing level and diet quality of the US grocery cart: is there an association?. Public Health Nutr. 2019. 22:2357-2366	Outcome (Purchase data)

#	Citation	Exclusion rationale
140	Jyväkorpi, S. K.,Urtamo, A.,Strandberg, T. E Self-Perception of Economic Means Is Associated with Dietary Choices, Diet Quality and Physical Health in the Oldest Old Men from the Highest Socioeconomic Group. J Nutr Health Aging. 2019. 23:60-62	Country
141	Kamdar, N., Hughes, S. O., Chan, W., Power, T. G., Meininger, J. Indirect Effects of Food Insecurity on Body Mass Index Through Feeding Style and Dietary Quality Among Low-Income Hispanic Preschoolers. J Nutr Educ Behav. 2019. 51:876-884	Intervention/ Exposure
142	Kang, M.,Park, S. Y.,Shvetsov, Y. B.,Wilkens, L. R.,Marchand, L. L.,Boushey, C. J.,Paik, H. Y Sex differences in sociodemographic and lifestyle factors associated with diet quality in a multiethnic population. Nutrition. 2019. 66:147-152	Intervention/ Exposure
143	Kant, A. K., Graubard, B. I Secular trends in regional differences in nutritional biomarkers and self-reported dietary intakes among American adults: National Health and Nutrition Examination Survey (NHANES) 1988-1994 to 2009-2010. Public Health Nutr. 2018. 21:927-939	Intervention/ Exposure
144	Karimbeiki, R., Pourmasoumi, M., Feizi, A., Abbasi, B., Hadi, A., Rafie, N., Safavi, S. M Higher dietary diversity score is associated with obesity: a case-control study. Public Health. 2018. 157:127-134	Country
145	Karpyn, A., Young, C. R., Collier, Z., Glanz, K Correlates of Healthy Eating in Urban Food Desert Communities. Int J Environ Res Public Health. 2020. 17	Intervention/ Exposure
146	Kay, M. C., Wasser, H., Adair, L. S., Thompson, A. L., Siega-Riz, A. M., Suchindran, C. M., Bentley, M. E Consumption of key food groups during the postpartum period in low-income, non-Hispanic black mothers. Appetite. 2017. 117:161-167	Outcome
147	Kegler, M. C., Prakash, R., Hermstad, A., Anderson, K., Haardörfer, R., Raskind, I. G Food Acquisition Practices, Body Mass Index, and Dietary Outcomes by Level of Rurality. J Rural Health. 2020.	Outcome
148	Keita, A. D., Casazza, K., Thomas, O., Fernandez, J. R Neighborhood-level disadvantage is associated with reduced dietary quality in children. J Am Diet Assoc. 2009. 109:1612-6	Outcome
149	Kell, K. P., Judd, S. E., Pearson, K. E., Shikany, J. M., Fernández, J. R Associations between socio-economic status and dietary patterns in US black and white adults. Br J Nutr. 2015. 113:1792-9	Data date range
150	Kharmats, A. Y., Jones-Smith, J. C., Cheah, Y. S., Budd, N., Flamm, L., Cuccia, A., Mui, Y., Trude, A., Gittelsohn, J Relation between the Supplemental Nutritional Assistance Program cycle and dietary quality in low-income African Americans in Baltimore, Maryland. Am J Clin Nutr. 2014. 99:1006-14	Outcome
151	Kilanowski, J. F., Moore, L. C Food security and dietary intake in midwest migrant farmworker children. J Pediatr Nurs. 2010. 25:360-6	Data date range
152	Kilanowski, J. F Patterns and correlates of nutrition among migrant farm-worker children. West J Nurs Res. 2012. 34:396-416	Intervention/ Exposure
153	Kolodinsky, Jane M., Sitaker, Marilyn, Morgan, Emily H., Connor, Leah M., Hanson, Karla L., Becot, Florence, Pitts, Stephanie B. Jilcott, Ammerman, Alice S., Seguin, Rebecca A Can CSA Cost-Offset Programs Improve Diet Quality for Limited Resource Families?. 2017. 32:10	Study design
154	Kranz, S.,McCabe, G. P Examination of the five comparable component scores of the diet quality indexes HEI-2005 and RC-DQI using a nationally representative sample of 2-18 year old children: NHANES 2003-2006. J Obes. 2013. 2013:376314	Data date range
155	Lacko, A., Delamater, P., Gordon-Larsen, P., Wen Ng, S Geographic patterns and socioeconomic differences in the nutritional quality of household packaged food purchases in the United States. Health Place. 2021. 69:102567	Outcome (Purchase data)
156	Lacko, A.,Ng, S. W.,Popkin, B Urban vs Rural Socioeconomic Differences in the Nutritional Quality of Household Packaged Food Purchases by Store Type. Int J Environ Res Public Health. 2020. 17	Outcome
157	Larson, N.,Laska, M. N.,Neumark-Sztainer, D Food Insecurity, Diet Quality, Home Food Availability, and Health Risk Behaviors Among Emerging Adults: Findings From the EAT 2010-2018 Study. Am J Public Health. 2020. 110:1422-1428	Outcome; Comparator

#	Citation	Exclusion rationale
158	LeCroy, M. N., Nicastro, H. L., Truesdale, K. P., Matheson, D. M., Ievers-Landis, C. E., Pratt, C. A., Jones, S., Sherwood, N. E., Burgess, L. E., Robinson, T. N., Yang, S., Stevens, J. Dietary patterns and associations with BMI in low-income, ethnic minority youth in the USA according to baseline data from four randomised controlled trials. Br J Nutr. 2020. :1-11	Comparator
159	LeDoux, T. F., Vojnovic, I Examining the role between the residential neighborhood food environment and diet among low-income households in Detroit, Michigan. Applied Geography. 2014. 55:9-18	Outcome
160	Lee, J., Kubik, M. Y., Fulkerson, J. A Diet Quality and Fruit, Vegetable, and Sugar-Sweetened Beverage Consumption by Household Food Insecurity among 8- to 12-Year-Old Children during Summer Months. J Acad Nutr Diet. 2019. 119:1695-1702	Intervention/ Exposure
161	Lee, Jonq-Ying. Food Assistance Programs and Healthy Diet among Low-Income Individuals. 2009. :5	Data date range
162	Lee, R., Zhai, F., Han, W. J., Brooks-Gunn, J., Waldfogel, J "Head Start and Children's Nutrition, Weight, and Health Care Receipt". Early Child Res Q. 2013. 28	Data date range
163	Leung, C. W., Cluggish, S., Villamor, E., Catalano, P. J., Willett, W. C., Rimm, E. B Few changes in food security and dietary intake from short-term participation in the Supplemental Nutrition Assistance Program among low-income Massachusetts adults. J Nutr Educ Behav. 2014. 46:68-74	Outcome
164	Leung, C. W., Epel, E. S., Ritchie, L. D., Crawford, P. B., Laraia, B. A Food insecurity is inversely associated with diet quality of lower-income adults. J Acad Nutr Diet. 2014. 114:1943-53.e2	Intervention/ Exposure
165	Leung, C. W., Tester, J. M The Association between Food Insecurity and Diet Quality Varies by Race/Ethnicity: An Analysis of National Health and Nutrition Examination Survey 2011-2014 Results. J Acad Nutr Diet. 2019. 119:1676-1686	Intervention/ Exposure
166	Leung, C. W., Wolfson, J. A., Lahne, J., Barry, M. R., Kasper, N., Cohen, A. J Associations between Food Security Status and Diet-Related Outcomes among Students at a Large, Public Midwestern University. J Acad Nutr Diet. 2019. 119:1623-1631	Outcome
167	Leung, C. W., Wolfson, J. A Food Insecurity Among Older Adults: 10-Year National Trends and Associations with Diet Quality. J Am Geriatr Soc. 2021. 69:964-971	Intervention/ Exposure
168	Lin, Biing-Hwan. Diet Quality Usually Varies by Income Status. 2005. :2	
169	Lin, D.,Zickgraf, H.,Butt, M.,Rigby, A Food insecurity is linked to poorer dietary quality in prebariatric surgery patients. Surg Obes Relat Dis. 2021. 17:263-270	Outcome
170	Link, L. B., Jacobson, J. S Factors affecting adherence to a raw vegan diet. Complement Ther Clin Pract. 2008. 14:53-9	Data date range
171	Lipsky, L. M., Nansel, T. R., Haynie, D. L., Liu, D., Li, K., Pratt, C. A., Iannotti, R. J., Dempster, K. W., Simons-Morton, B Diet quality of US adolescents during the transition to adulthood: changes and predictors. Am J Clin Nutr. 2017. 105:1424-1432	Intervention/ Exposure
172	Litvak, J., Parekh, N., Juul, F., Deierlein, A Food assistance programs and income are associated with the diet quality of grocery purchases for households consisting of women of reproductive age or young children. Prev Med. 2020. 138:106149	Outcome (Purchase data)
173	Liu, J.,Micha, R.,Li, Y.,Mozaffarian, D Trends in Food Sources and Diet Quality Among US Children and Adults, 2003-2018. JAMA Netw Open. 2021. 4:e215262	Outcome
174	Liu, Y.,Zhang, Y.,Remley, D. T.,Eicher-Miller, H. A Frequency of Food Pantry Use Is Associated with Diet Quality among Indiana Food Pantry Clients. J Acad Nutr Diet. 2019. 119:1703-1712	Intervention/ Exposure
175	Lyerly, R.,Rummo, P.,Amin, S.,Evans, W.,Cohen, E. D.,Lawson, E.,Hallett, E.,De-Oliveira, S.,Rose, J.,Sutten Coats, C.,Nunn, A Effectiveness of mobile produce markets in increasing access and affordability of fruits and vegetables among low-income seniors. Public Health Nutr. 2020. 23:3226-3235	Outcome
176	Ma, C.,Ho, S. K. M.,Singh, S.,Choi, M. Y Gender Disparities in Food Security, Dietary Intake, and Nutritional Health in the United States. Am J Gastroenterol. 2021. 116:584-592	Outcome

#	Citation	Exclusion rationale
177	Madrigal, J. M., Cedillo-Couvert, E., Ricardo, A. C., Appel, L. J., Anderson, C. A. M., Deo, R., Hamm, L. L., Cornish-Zirker, D., Tan, T. C., Sha, D., Hsu, J. Y., Zenk, S. N., Saunders, M. R., Persky, V., Lash, J. P Neighborhood Food Outlet Access and Dietary Intake among Adults with Chronic Kidney Disease: Results from the Chronic Renal Insufficiency Cohort Study. J Acad Nutr Diet. 2020. 120:1151-1162.e3	Intervention/ Exposure
178	Mancino, Lisa ,Gregory, Christian A Food-Insecure Households Score Lower on Diet Quality Compared to Food-Secure Households. 2020; March 2020 (02)	Outcome
179	Mancino, Lisa, Guthrie, Joanne. SNAP Households Must Balance Multiple Priorities To Achieve a Healthful Diet. 2014; (10):1.	Outcome
180	Marmash, D.,Ha, K.,Sakaki, J. R.,Gorski, I.,Rule, B.,Foster, J.,Puglisi, M.,Chun, O. K Diet Quality, Nutritional Adequacy, and Sociodemographic Characteristics of Mobile Food Pantry Users in Northeastern Connecticut. Nutrients. 2021. 13	Outcome
181	Mayne, S. L., Virudachalam, S., Fiks, A. G Clustering of unhealthy behaviors in a nationally representative sample of U.S. children and adolescents. Prev Med. 2020. 130:105892	Intervention/ Exposure; Outcome; Comparator
182	McClain, A. C., Tucker, K. L., Falcon, L. M., Mattei, J Food insecurity and dietary intake by Supplemental Nutrition Assistance Program participation status among mainland US Puerto Rican adults after the 2009 American Recovery and Reinvestment Act. Public Health Nutrition. 2019. 22:2989-2998	Outcome
183	Merhout, F.,Doyle, J Socioeconomic Status and Diet Quality in College Students. J Nutr Educ Behav. 2019. 51:1107-1112	Outcome
184	Metzgar, M.,Rideout, T. C.,Fontes-Villalba, M.,Kuipers, R. S The feasibility of a Paleolithic diet for low-income consumers. Nutr Res. 2011. 31:444-51	Comparator; Data date range
185	Millstein, R. A., Yeh, H. C., Brancati, F. L., Batts-Turner, M., Gary, T. L Food availability, neighborhood socioeconomic status, and dietary patterns among blacks with type 2 diabetes mellitus. Medscape J Med. 2009. 11:15	Data date range
186	Misyak, S. A., Hedrick, V. E., Pudney, E., Serrano, E. L., Farris, A. R Reliability of a Market Basket Assessment Tool (MBAT) for Use in SNAP-Ed Healthy Retail Initiatives. J Nutr Educ Behav. 2018. 50:511-515	Intervention/ Exposure
187	Molitor, F., Doerr, C., Pugliese, J., Whetstone, L Three-year trends in dietary behaviours among mothers, teenagers and children from SNAP-Ed (Supplemental Nutrition Assistance Program-Education) eligible households across California. Public Health Nutr. 2020. 23:3-12	Intervention/ Exposure
188	Molitor, F.,Sugerman, S. B.,Sciortino, S. Fruit and Vegetable, Fat, and Sugar-Sweetened Beverage Intake Among Low-Income Mothers Living in Neighborhoods With Supplemental Nutrition Assistance Program-Education. J Nutr Educ Behav. 2016. 48:683-690.e1	Intervention/ Exposure
189	Monsivais, P.,Drewnowski, A Lower-energy-density diets are associated with higher monetary costs per kilocalorie and are consumed by women of higher socioeconomic status. J Am Diet Assoc. 2009. 109:814-22	Data date range
190	Monsivais, P.,Rehm, C. D.,Drewnowski, A The DASH diet and diet costs among ethnic and racial groups in the United States. JAMA Intern Med. 2013. 173:1922-4	Data date range
191	Moore, L. V., Diez Roux, A. V., Nettleton, J. A., Jacobs, D. R., Jr Associations of the local food environment with diet qualitya comparison of assessments based on surveys and geographic information systems: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2008. 167:917-24	Data date range
192	Mousa, T. Y., Freeland-Graves, J. H Food security of food recipients of a food pantry and soup kitchen. Public Health Nutr. 2019. 22:1451-1460	Intervention/ Exposure
193	Muhammad, J. N., Fernandez, J. R., Clay, O. J., Saag, M. S., Overton, E. T., Willig, A. L Associations of food insecurity and psychosocial measures with diet quality in adults aging with HIV. AIDS Care. 2019. 31:554-562	Intervention/ Exposure

#	Citation	Exclusion rationale
194	Mulik, K., Haynes-Maslow, L The Affordability of MyPlate: An Analysis of SNAP Benefits and the Actual Cost of Eating According to the Dietary Guidelines. J Nutr Educ Behav. 2017. 49:623-631.e1	Intervention/ Exposure
195	Mullany, B., Neault, N., Tsingine, D., Powers, J., Lovato, V., Clitso, L., Massey, S., Talgo, A., Speakman, K., Barlow, A Food insecurity and household eating patterns among vulnerable American-Indian families: associations with caregiver and food consumption characteristics. Public Health Nutr. 2013. 16:752-60	
196	Mullie, P., Clarys, P., Hulens, M., Vansant, G. Dietary patterns and socioeconomic position. Eur J Clin Nutr. 2010. 64:231-8	Country; Data date range
197	Newby, P. K., Noel, S. E., Grant, R., Judd, S., Shikany, J. M., Ard, J. Race and region have independent and synergistic effects on dietary intakes in black and white women. Nutr J. 2012. 11:25	Outcome
198	Ng, S. W.,Poti, J. M.,Popkin, B. M Trends in racial/ethnic and income disparities in foods and beverages consumed and purchased from stores among US households with children, 2000-2013. Am J Clin Nutr. 2016. 104:750-9	Outcome
199	Nguyen, B. T., Han, X., Jemal, A., Drope, J Diet quality, risk factors and access to care among low-income uninsured American adults in states expanding Medicaid vs states not expanding under the affordable care act. Prev Med. 2016. 91:169-171	Intervention/ Exposure
200		
201		
202		
203		
204	Park, S. Y., Shvetsov, Y. B., Kang, M., Setiawan, V. W., Wilkens, L. R., Le Marchand, L., Boushey, C. J Changes in Diet Quality over 10 Years Are Associated with Baseline Sociodemographic and Lifestyle Factors in the Multiethnic Cohort Study. J Nutr. 2020. 150:1880-1888	Intervention/ Exposure
205		
206		
207	Perkins, S., Daley, A., Yerxa, K., Therrien, M The Effectiveness of the Expanded Food and Nutrition Education Program (EFNEP) on Diet Quality as Measured by the Healthy Eating Index. Am J Lifestyle Med. 2020. 14:316-325	
208		
209	Pooler, J. A., Srinivasan, M., Wong, K., Blitstein, J. L.: Food Skills Education and Low-Income Adults' Healthy Food Choices. Int Q Community Health Educ. 2021. :272684x211004941 Expo	
210	Poskute, A. S., Nzesi, A., Geliebter, A Changes in food intake during the COVID-19 pandemic in New York City. Appetite. 2021. 163:105191	Comparator Outcome
211	Ralston, P. A., Cohen, N. L., Wickrama, K., Kwag, K Social Support and Dietary Quality in Older African American Public Housing Residents. Research on Aging. 2011. 33:688-712	Data date range

#	Citation	Exclusion rationale
212	approach to understanding how food access is associated with dietary intake and BMI among urban, low-income African American women. Health Place. 2020. 66:102458	
213	Rawal, R., Kuczmarski, M. F., Cotugna, N., Brewer, B. C., Beydoun, M. A., Hughes, V. C., Zonderman, A. B., Evans, M. K Aspects of Dietary Diversity Changes across Adulthood in Racially Diverse Adults. Nutrients. 2020; 12 (8)	
214	Rehm, C. D., Monsivais, P., Drewnowski, A Relation between diet cost and Healthy Eating Index 2010 scores among adults in the United States 2007-2010. Prev Med. 2015. 73:70-5	Intervention/ Exposure
215	Rex, S. M., Kopetsky, A., Bodt, B., Robson, S. M Relationships Among the Physical and Social Home Food Environments, Dietary Intake, and Diet Quality in Mothers and Children. J Acad Nutr Diet. 2021.	Intervention/ Exposure
216	Richardson, A. S., Collins, R. L., Ghosh-Dastidar, B., Ye, F., Hunter, G. P., Baird, M. D., Schwartz, H., Sloan, J. C., Nugroho, A., Beckman, R., Troxel, W. M., Gary-Webb, T. L., Dubowitz, T Improvements in Neighborhood Socioeconomic Conditions May Improve Resident Diet. Am J Epidemiol. 2021. 190:798-806	Comparator
217	Rifas-Shiman, S. L.,Rich-Edwards, J. W.,Kleinman, K. P.,Oken, E.,Gillman, M. W Dietary quality during pregnancy varies by maternal characteristics in Project Viva: a US cohort. J Am Diet Assoc. 2009. 109:1004-11	Data date range
218		
219	Rose, C. M., Gupta, S., Buszkiewicz, J., Ko, L. K., Mou, J., Cook, A., Moudon, A. V., Aggarwal, A., Drewnowski, A Small increments in diet cost can improve compliance with the Dietary Guidelines for Americans. Soc Sci Med. 2020. 266:113359	Intervention/ Exposure
220	Rose, D.,Heller, M. C.,Willits-Smith, A. M.,Meyer, R. J Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am J Clin Nutr. 2019. 109:526-534	Intervention/ Exposure; Outcome
221	Rossen, L. M., Kobernik, E. K Food insecurity and dietary intake among US youth, 2007-2010. Pediatr Obes. 2016. 11:187-93	Outcome
222	Rummo, P. E., Meyer, K. A., Boone-Heinonen, J., Jacobs, D. R., Jr., Kiefe, C. I., Lewis, C. E., Steffen, L. M., Gordon-Larsen, P Neighborhood availability of convenience stores and diet quality: findings from 20 years of follow-up in the coronary artery risk development in young adults study. Am J Public Health. 2015. 105:e65-73	Data date range
223	Sanjeevi, N.,Freeland-Graves, J. H Association of Grocery Expenditure Relative to Thrifty Food Plan Cost with Diet Quality of Women Participating in the Supplemental Nutrition Assistance Program. J Acad Nutr Diet. 2018. 118:2315-2323	Comparator
224	Sanjeevi, N.,Freeland-Graves, J.,Hersh, M Food insecurity, diet quality and body mass index of women participating in the Supplemental Nutrition Assistance Program: The role of intrapersonal, home environment, community and social factors. Appetite. 2018. 125:109-117	Intervention/ Exposure
225		
226	Saxe-Custack, A.,LaChance, J.,Hanna-Attisha, M.,Ceja, T Fruit and Vegetable Prescriptions for Pediatric Patients Living in Flint, Michigan: A Cross-Sectional Study of Food Security and Dietary Patterns at Baseline. Nutrients. 2019. 11	
227	Shah, B. S., Freeland-Graves, J. H., Cahill, J. M., Lu, H., Graves, G. R Diet quality as measured by the healthy eating index and the association with lipid profile in low-income women in early postpartum. J Am Diet Assoc. 2010. 110:274-9	Data date range
228	Sharkey, J. R., Nalty, C., Johnson, C. M., Dean, W. R Children's very low food security is associated with increased dietary intakes in energy, fat, and added sugar among Mexican-origin children (6-11 y) in Texas border Colonias. BMC Pediatr. 2012. 12:16	Outcome

#	Citation	Exclusion rationale
229	Sharpe, P. A., Whitaker, K., Alia, K. A., Wilcox, S., Hutto, B Dietary Intake, Behaviors and Psychosocial Factors Among Women from Food-Secure and Food-Insecure Households in the United States. Ethn Dis. 2016. 26:139-46	Intervention/ Exposure
230	Shiao, S. P. K., Grayson, J., Lie, A., Yu, C. H Predictors of the Healthy Eating Index and Glycemic Index in Multi-Ethnic Colorectal Cancer Families. Nutrients. 2018. 10	
231	Shin, Dayeon,Lee, Kyung Won,Song, Won O Pre-Pregnancy Weight Status Is Associated with Diet Quality and Nutritional Biomarkers during Pregnancy. Nutrients. 2016; 8 (3):162.	Outcome
232	Silveira, B. K. S., de Novaes, J. F., Vieira, S. A., Rocha, Dmup, Leal, A. C. G., Hermsdorff, H. H. M Sociodemographic characteristics and dietary patterns in cardiometabolic risk subjects. British Food Journal. 2019. 121:2780-2790	Country
233	Spees, C. K., Clark, J. E., Hooker, N. H., Watowicz, R. P., Taylor, C. A Dietary Intake Contributions of Food and Beverages by Source and Food Security Status in US Adults. J Nutr Educ Behav. 2017. 49:667-673.e1	Intervention/ Exposure
234	Stein, C., Cunha-Cruz, J., Hugo, F. N Is dietary pattern a mediator of the relationship between socioeconomic status and dental caries?. Clin Oral Investig. 2021.:	Intervention/ Exposure
235	Stephenson, B. J. K., Sotres-Alvarez, D., Siega-Riz, A. M., Mossavar-Rahmani, Y., Daviglus, M. L., Van Horn, L., Herring, A. H., Cai, J. Empirically Derived Dietary Patterns Using Robust Profile Clustering in the Hispanic Community Health Study/Study of Latinos. J Nutr. 2020. 150:2825-2834	Intervention/ Exposure
236		
237	Taillie, L. S.,Ng, S. W.,Xue, Y.,Harding, M Deal or no deal? The prevalence and nutritional quality of price promotions among U.S. food and beverage purchases. Appetite. 2017. 117:365-372	Outcome
238		
239		
240	Teufel-Shone, N. I., Jiang, L. H., Beals, J., Henderson, W. G., Zhang, L. J., Acton, K. J., Roubideaux, Y., Manson, S. M Demographic characteristics and food choices of participants in the Special Diabetes Program for American Indians Diabetes Prevention Demonstration Project. Ethnicity & Health. 2015. 20:327-340	Data date range
241		
242		
243	Thomson, J. L., Zoellner, J. M., Tussing-Humphreys, L. M., Goodman, M. H Moderators of intervention dose effects on diet quality and physical activity changes in a church-based, multicomponent, lifestyle study: Delta Body and Soul III. Health Educ Res. 2016. 31:339-49	Intervention/ Exposure
244	Todd, Jessica E Changes in Eating Patterns and Diet Quality Among Working-Age Adults, 2005-2010. 2014	Outcome
245	Torres-Aguilar, P.,Teran-Garcia, M.,Wiley, A.,Raffaelli, M.,Morales, M Factors Correlated to Protective and Risk Dietary Patterns in Immigrant Latino Mothers in Non-metropolitan Rural Communities. J Immigr Minor Health. 2016. 18:652-659	Outcome

#	Citation	Exclusion rationale
246	Townsend, M. S., Aaron, G. J., Monsivais, P., Keim, N. L., Drewnowski, A Less-energy-dense diets of low-income women in California are associated with higher energy-adjusted diet costs. Am J Clin Nutr. 2009. 89:1220-6	Data date range
247	Tran, L. T.,Brewster, P. J.,Chidambaram, V.,Hurdle, J. F Towards Measuring the Food Quality of Grocery Purchases: an Estimation Model of the Healthy Eating Index-2010 Using only Food Item Counts. Procedia Food Sci. 2015. 4:148-159	
248	Trapp, C. M., Burke, G., Gorin, A. A., Wiley, J. F., Hernandez, D., Crowell, R. E., Grant, A., Beaulieu, A., Cloutier, M. M The relationship between dietary patterns, body mass index percentile, and household food security in young urban children. Child Obes. 2015. 11:148-55	Outcome
249	Treviño, R. P., Vasquez, L., Shaw-Ridley, M., Mosley, D., Jechow, K., Piña, C Outcome of a food observational study among low-income preschool children participating in a family-style meal setting. Health Educ Behav. 2015. 42:240-8	Intervention/ Exposure; Outcome; Comparator
250	Trude, A. C. B., Black, M. M., Surkan, P. J., Hurley, K. M., Wang, Y. Maternal anxiety and diet quality among mothers and toddlers from low-income households. Matern Child Nutr. 2020. 16:e12992	Comparator
251	Truesdale, K. P.,Matheson, D. M.,JaKa, M. M.,McAleer, S.,Sommer, E. C.,Pratt, C. A Baseline diet quality of predominantly minority children and adolescents from households characterized by low socioeconomic status in the Childhood Obesity Prevention and Treatment Research (COPTR) Consortium. BMC Nutr. 2019. 5:38	Intervention/ Exposure
252	· · · · · · · · · · · · · · · · · · ·	
253	Vadiveloo, M.,Guan, X.,Parker, H. W.,Perraud, E.,Buchanan, A.,Atlas, S.,Thorndike, A. N Effect of Personalized Incentives on Dietary Quality of Groceries Purchased: A Randomized Crossover Trial. JAMA Netw Open. 2021. 4:e2030921	Intervention/ Exposure
254	Vadiveloo, M., Perraud, E., Parker, H. W., Juul, F., Parekh, N Geographic Differences in the Dietary Quality of Food Purchases among Participants in the Nationally Representative Food Acquisition and Purchase Survey (FoodAPS). Nutrients. 2019. 11:	Outcome (Purchase data)
255	Ver Ploeg, Michele, Rahko vs.ky, Ilya. Recent Evidence on the Effects of Food Store Access on Food Choice and Diet Quality. 2016. :1	Outcome; Study design
256	Wang, D. D., Leung, C. W., Li, Y., Ding, E. L., Chiuve, S. E., Hu, F. B., Willett, W. C Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern Med. 2014. 174:1587-95	Outcome
257	Wang, Y., Chen, X How much of racial/ethnic disparities in dietary intakes, exercise, and weight status can be explained by nutrition- and health-related psychosocial factors and socioeconomic status among US adults?. J Am Diet Assoc. 2011. 111:1904-11	Data date range
258	Wang, Y., Jahns, L., Tussing-Humphreys, L., Xie, B., Rockett, H., Liang, H., Johnson, L Dietary intake patterns of low-income urban african-american adolescents. J Am Diet Assoc. 2010. 110:1340-5	Intervention/ Exposure
259		
260	Wen, X., Kong, K. L., Eiden, R. D., Sharma, N. N., Xie, C Sociodemographic differences and infant dietary patterns. Pediatrics. 2014. 134:e1387-98	Data date range
261	Whiteman, E. D., Chrisinger, B. W., Hillier, A Diet Quality Over the Monthly Supplemental Nutrition Assistance Program Cycle. Am J Prev Med. 2018. 55:205-212	Outcome (Purchase data)
262	Wilson, Magdalena M.,Reedy, Jill,Krebs-Smith, Susan M American Diet Quality: Where It Is, Where It Is Heading, and What It Could Be. Journal of the Academy of Nutrition and Dietetics. 2016. 116:302-310.e1	Intervention/ Exposure

#	Citation	Exclusion rationale
263	Woodruff, R. C., Haardörfer, R., Raskind, I. G., Hermstad, A., Kegler, M. C Comparing food desert residents with non-food desert residents on grocery shopping behaviours, diet and BMI: results from a propensity score analysis. Public Health Nutr. 2020. 23:806-811	Outcome
264	Wright, B. N., Bailey, R. L., Craig, B. A., Mattes, R. D., McCormack, L., Stluka, S., Franzen-Castle, L., Henne, B., Mehrle, D., Remley, D., Eicher-Miller, H. A Daily Dietary Intake Patterns Improve after Visiting a Food Pantry among Food-Insecure Rural Midwestern Adults. Nutrients. 2018. 10:	Intervention/ Exposure
265	Wright, B. N., Tooze, J. A., Bailey, R. L., Liu, Y., Rivera, R. L., McCormack, L., Stluka, S., Franzen-Castle, L., Henne, B., Mehrle, D., Remley, D., Eicher-Miller, H. A Dietary Quality and Usual Intake of Underconsumed Nutrients and Related Food Groups Differ by Food Security Status for Rural, Midwestern Food Pantry Clients. J Acad Nutr Diet. 2020. 120:1457-1468	Intervention/ Exposure
266	Wright, B. N., Vasquez-Mejia, C. M., Guenther, P. M., McCormack, L., Stluka, S., Franzen-Castle, L., Henne, B., Mehrle, D., Remley, D., Eicher-Miller, H. A Fruit and Vegetable Healthy Eating Index Component Scores of Distributed Food Bags Were Positively Associated with Client Diet Scores in a Sample of Rural, Midwestern Food Pantries. J Acad Nutr Diet. 2021. 121:74-83	Intervention/ Exposure
267	Young, C. M.,Batch, B. C.,Svetkey, L. P Effect of socioeconomic status on food availability and cost of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern. J Clin Hypertens (Greenwich). 2008. 10:603-11	Data date range
268	Zarnowiecki, D.,Ball, K.,Parletta, N.,Dollman, J Describing socioeconomic gradients in children's diets - does the socioeconomic indicator used matter?. Int J Behav Nutr Phys Act. 2014. 11:44	Country
269	Zhang, Q., Wang, Y. F Socioeconomic and Racial/Ethnic Disparity in Americans' Adherence to Federal Dietary Recommendations. Journal of the Academy of Nutrition and Dietetics. 2012. 112:614-616	Study design
270	Zimmer, M. C., Rubio, V., Kintziger, K. W., Barroso, C Racial/Ethnic Disparities in Dietary Intake of U.S. Children Participating in WIC. Nutrients. 2019. 11	Outcome
271	Zimmer, M. C., Vernarelli, J. A Select Food Group Intake of US Children Aged 2 to 4 Years by WIC Participation Status and Income. J Acad Nutr Diet. 2020. 120:2032-2038.e1	Outcome

Appendix 3-a: Literature search strategy for the rapid review on diet cost and HEI

Database: PubMed

Vendor: National Library of Medicine

Date of Search: June 18, 2021

Limits Used: Filters: Language English; Publication Dates 2008 - 2021

Total = 1,152

Search #	Concept	Search String	N
#1	Diet	"Food and Beverages"[Mesh] OR food*[tiab] OR "Diet, Healthy"[Mesh] OR "healthy diet*"[tiab] OR "unhealthy diet*"[tiab] OR diet[tiab]	1,283,793
#2	Price/Cost	"Costs and Cost Analysis" [Mesh] OR cost*[tiab] OR price*[tiab] OR pricing*[tiab] OR affordab*[tiab] OR expense*[tiab] OR expenditure*[tiab] OR budget*[tiab] OR purchas*[tiab] OR cash[tiab] OR money[tiab] OR monetary[tiab] OR monies[tiab]	945,938
#3	HEI (including dietary patterns terms)	HEI OR "healthy eating index" OR "diet quality"[tiab] OR "dietary quality"[tiab] OR "dietary guidelines" OR "dietary recommendation*"[tiab] OR "dietary intake*"[tiab] OR "dietary consumption"[tiab] OR "eating style*"[tiab] OR "Guideline Adherence"[Mesh] OR "guideline adherence*"[tiab] OR "diet score*"[tiab] OR "diet quality score*"[tiab] OR "diet quality index*"[tiab] OR "diet index*"[tiab] OR "dietary index*"[tiab] OR "food score*"[tiab] OR "dietary pattern*"[tiab] OR "diet pattern*"[tiab] OR "eating pattern*"[tiab] OR "food pattern*"[tiab]	88,968
#4		#1 AND #2 AND #3	3,188
#5	Non-United States	#1 AND #2 AND #3 NOT ("Developing Countries"[Mesh] OR "developing countr*" OR "Under Developed Nation*" OR "low income countr*" OR "middle income countr*"OR "low-middle-income countr*" OR LMIC[tiab] OR "Europe"[Mesh] OR "Australia"[Mesh] OR "Asia"[Mesh] OR "Africa"[Mesh] OR "Mexico"[Mesh] OR "Islands"[Mesh] OR "Central America"[Mesh] OR "Latin America"[Mesh] OR "South America"[Mesh])	2,146
#6	Publication Excludes	NOT (letter[ptyp] OR editorial[ptyp] OR comment[ptyp] OR news[ptyp] OR "Congress"[Publication Type] OR "Consensus Development Conference"[Publication Type] OR editorial[tiab] OR commentary[tiab] OR "conference abstract*"[tiab] OR "systematic review*"[ti] OR "meta-analysis"[ptyp] OR "meta-analysis"[ti] OR "meta-analyses"[ti] OR "Review"[Publication Type] OR "Systematic Review"[Publication Type] OR "conference proceeding*"[tiab] OR "retracted publication"[ptyp] OR "retraction of publication"[ptyp] OR "retraction of publication"[tiab] OR "retraction notice"[ti] OR "retracted publication"[tiab] OR "Published Erratum"[Publication Type] OR corrigenda[tiab] OR	1,657

		corrigendum[tiab] OR errata[tiab] OR erratum[tiab] OR protocol[ti] OR protocols[ti] OR "case report"[ti] OR "case series"[ti] OR "Case Reports" [Publication Type])	
#7		NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))	1,562
#8	Limits: Language/Dates	Filters: English, from 2008 - 2021	1,152

Database: Business Source Premier

Vendor: EBSCO

Date of Search: June 18, 2021

Limits Used: Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language:

English Total = 887

Search #	Concept	Search String	N
#1	Diet	(DE "BEVERAGE consumption") OR (DE "FOOD consumption forecasting") OR (DE "FOOD consumption statistics") OR food* OR "healthy diet*" OR "unhealthy diet*"	704,148
#2	Price/Cost	(DE "FOOD prices") OR cost* OR price* OR pricing OR affordab* OR expense* OR expenditure* OR budget* OR purchas* OR cash OR money OR monetary OR monies	3,680,852
#3	HEI (including dietary patterns terms)	HEI OR "healthy eating index" OR "diet quality" OR "dietary quality" OR "dietary guidelines" OR "dietary recommendation*" OR "dietary intake*" OR "dietary consumption" OR "eating style*" OR "guideline adherence*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR "diet index*" OR "dietary index*" OR "food score*" OR "dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*"	11,319
#4		#1 AND #2 AND #3	2,269
#5	Filters	Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language: English	887

Database: Web of Science: Core Collection

Vendor: Clarivate Analytics Date of Search: 6/18/2021

Limits Used: Years: 2008-2021; Publication Types: Articles, Early Access; Language: English

Total = 2,022

Search #	Concept	Search String	N
#1	Diet	(TS=(food* OR "healthy diet*" OR "unhealthy diet*"))	824,277

#2	Price/Cost	(TS=(cost* OR price* OR affordab* OR expense* OR expenditure* OR budget* OR purchas* OR cash OR money OR monetary OR monies))	
#3	HEI	(TS=(HEI OR "healthy eating index" OR "diet quality" OR "dietary quality" OR "dietary guidelines" OR "dietary recommendation*" OR "dietary intake*" OR "dietary consumption" OR "eating style*" OR "guideline adherence*" OR "diet score*" OR "diet quality score*" OR "diet quality index*" OR "diet index*" OR "dietary index*" OR "food score*" OR "dietary pattern*" OR "diet pattern*" OR "eating pattern*" OR "food pattern*"))	
#4	#1 AND #2 AND #3		3,559
#5	Non-United States Excludes	CU=("developing countr*" OR "under developed nation*" OR "low i ncome countr*" OR "middle income countr*" OR "low-middle income countr*" OR LMIC OR Europe OR Australia OR Asia OR Africa OR Mexico OR Island s OR "Central America" OR "Latin America" OR "South America")	2,061,484
#6	#4 NOT #5		3,137
#7	Publication Excludes	TS=(editorial OR commentary OR "conference abstract" OR "conference proceeding" [tiab] OR "retraction of publication" OR "retract ed publication" OR corrigenda [tiab] OR corrigendum [tiab] OR errat a OR erratum OR "case reports") OR TI=("systematic review" OR "meta-analysis" OR "meta analyses" OR protocol OR protocols OR "retraction notice" OR "case report" OR "case series")	
#8	#6 NOT #7		3,054
#9		Years: 2008-2021; Publication Types: Articles, Early Access; Language: English	2,022

Grey Literature Search:

Google Scholar

(Food OR diet) AND (Price OR cost OR budget OR money) AND (HEI OR "healthy eating index" OR dietary)

Limits: Date Published: 2008-2021;

Date Searched: 6/18/2021 Results: 50, limited to 5 pages

Google

site:.gov AND (diet OR food) AND (cost OR price) AND "healthy eating index"

Limits:

Date Searched: 6/18/2021

Results: Date Published: 30, limited to 3 pages

AgEcon

Any of the words: food diet

AND

Any of the words: cost price

AND

Any of the words: HEI "healthy eating index" dietary

Limits: Added/Modified since: 2008;

Date Searched: 6/21/2021

Results: Date Published: 40, limited to 4 pages

Appendix 3-b: Excluded articles for the rapid review on diet cost and HEI

The following table lists the articles excluded after full-text screening for this rapid review question. At least 1 reason for exclusion is provided for each article, though this may not reflect all possible reasons. Information about articles excluded after title and abstract screening is available upon request.

#	Bibliography	Exclusion rationale
1	affordable healthy food: Topics by Science.gov, 2021	Publication status
1 2 3 4 5	Federal Register, Volume 85 Issue 228 (Wednesday, November 25, 2020). 2020	Publication status
3	Healthy Eating Index (HEI) USDA-FNS. 2021	Publication status
4	Research Rundown: USDA School Nutrition and Meal Cost Study. 2019;	Pubilcation status
5	TFCO Access to Healthy Affordable Food	Outcome, Study design
	Acheampong, I., Haldeman, L. Are nutrition knowledge, attitudes, and beliefs	
	associated with obesity among low-income Hispanic and African American women	Intervention/Exposure,
6	caretakers?. J Obes. 2013; 2013 :123901. doi: 10.1155/2013/123901.	Outcome
	Aggarwal, A., Drewnowski, A. Plant- and animal-protein diets in relation to	
	sociodemographic drivers, quality, and cost: findings from the Seattle Obesity Study.	
7	Am J Clin Nutr. 2019; 110 (2):451-460. doi: 10.1093/ajcn/nqz064.	Outcome
	Aggarwal, A., Monsivais, P., Cook, A. J., Drewnowski, A. Does diet cost mediate the	
_	relation between socioeconomic position and diet quality?. Eur J Clin Nutr. 2011; 65	
8	(9):1059-66. doi: 10.1038/ejcn.2011.72.	Outcome
	Aggarwal, A., Monsivais, P., Cook, A. J., Drewnowski, A. Positive attitude toward	
0	healthy eating predicts higher diet quality at all cost levels of supermarkets. J Acad	0.4
9	Nutr Diet. 2014; 114 (2):266-72. doi: 10.1016/j.jand.2013.06.006.	Outcome
	Aggarwal, A., Monsivais, P., Drewnowski, A. Nutrient intakes linked to better health	
10	outcomes are associated with higher diet costs in the US. PLoS One. 2012; 7	Outcomo
10	(5):e37533. doi: 10.1371/journal.pone.0037533. Aggarwal, A.,Rehm, C. D.,Monsivais, P.,Drewnowski, A. Importance of taste,	Outcome
	nutrition, cost and convenience in relation to diet quality: Evidence of nutrition	
	resilience among US adults using National Health and Nutrition Examination Survey	
	(NHANES) 2007-2010. Prev Med. 2016; 90:184-92. doi:	
11	10.1016/j.ypmed.2016.06.030.	Intervention/Exposure
	Amenyenu, Anonya, Tegegne, Fisseha, Singh, Surendra P., Ekanem, Enefiok.	
	Knowledge of 2005 Dietary Guidelines and Food Consumption Habits of African-	Intervention/Exposure,
12	Americans in Tennessee. Journal of Food Distribution Research. 2010; 41 (1):1-4.	Data date range
-	Appelhans, B. M., French, S. A., Tangney, C. C., Powell, L. M., Wang, Y. To what	<u> </u>
	extent do food purchases reflect shoppers' diet quality and nutrient intake?. Int J	
13	Behav Nutr Phys Act. 2017; 14 (1):46. doi: 10.1186/s12966-017-0502-2.	Intervention/Exposure
	Appelhans, B. M., Milliron, B. J., Woolf, K., Johnson, T. J., Pagoto, S. L., Schneider, K.	
	L., Whited, M. C., Ventrelle, J. C. Socioeconomic status, energy cost, and nutrient	
	content of supermarket food purchases. Am J Prev Med. 2012; 42 (4):398-402. doi:	
_14	10.1016/j.amepre.2011.12.007.	Outcome
	Appelhans, B. M., Tangney, C. C., French, S. A., Crane, M. M., Wang, Y. Delay	
	discounting and household food purchasing decisions: The SHoPPER study. Health	
15	Psychol. 2019; 38 (4):334-342. doi: 10.1037/hea0000727.	Intervention/Exposure
	Basu, S., Gardner, C. D., White, J. S., Rigdon, J., Carroll, M. M., Akers, M., Seligman, H.	
	K. Effects Of Alternative Food Voucher Delivery Strategies On Nutrition Among Low-	
16	Income Adults. Health Aff (Millwood). 2019; 38 (4):577-584. doi:	Intervention/Exposure
16	10.1377/hlthaff.2018.05405. Basu, S., Seligman, H., Bhattacharya, J. Nutritional policy changes in the	Intervention/Exposure
	supplemental nutrition assistance program: a microsimulation and cost-effectiveness	
17	analysis. Med Decis Making. 2013; 33 (7):937-48. doi: 10.1177/0272989X13493971.	Intervention/Exposure
	analysis. Wied Decis Making. 2013, 35 (1).331-40. doi: 10.1111/10212303/13433311.	miler verillon/Exposure

Bibliography Exclusion rationale Baudry, J., Pointereau, P., Seconda, L., Vidal, R., Taupier-Letage, B., Langevin, B., Alles, B., Galan, P., Hercberg, S., Amiot, M. J., Boizot-Szantai, C., Hamza, O., Cravedi, J. P., Debrauwer, L., Soler, L. G., Lairon, D., Kesse-Guyot, E. Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. American Journal of Clinical Nutrition. 2019; 109 (4):1173-1188. doi: 10.1093/ajcn/ngy361. 18 Country Beheshti, R., Jones-Smith, J. C., Igusa, T. Taking dietary habits into account: A computational method for modeling food choices that goes beyond price. PLoS One. Outcome, Data date 19 2017; 12 (5):e0178348. doi: 10.1371/journal.pone.0178348. range Bernstein, A. M., Bloom, D. E., Rosner, B. A., Franz, M., Willett, W. C. Relation of food cost to healthfulness of diet among US women. Am J Clin Nutr. 2010; 92 (5):1197-203. doi: 10.3945/ajcn.2010.29854. 20 Data date range Bessems, Kmhh, Linssen, E., Lomme, M., Van Assema, P. The Effectiveness of the Good Affordable Food Intervention for Adults with Low Socioeconomic Status and Small Incomes, International Journal of Environmental Research and Public Health. 2020; 17 (7) doi: 10.3390/ijerph17072535. Outcome 21 Beydoun, M. A., Nkodo, A., Fanelli-Kuczmarski, M. T., Maldonado, A. I., Beydoun, H. A., Popkin, B. M., Evans, M. K., Zonderman, A. B. Longitudinal Associations between Monetary Value of the Diet, DASH Diet Score and the Allostatic Load among Middle-22 Aged Urban Adults. Nutrients. 2019; 11 (10) doi: 10.3390/nu11102360. Outcome Beydoun, M. A., Powell, L. M., Chen, X., Wang, Y. Food prices are associated with dietary quality, fast food consumption, and body mass index among U.S. children and Intervention/Exposure. adolescents. J Nutr. 2011; 141 (2):304-11. doi: 10.3945/jn.110.132613. Data date range 23 Beydoun, M. A., Powell, L. M., Wang, Y. Reduced away-from-home food expenditure and better nutrition knowledge and belief can improve quality of dietary intake among US adults. Public Health Nutr. 2009; 12 (3):369-81. doi: Intervention/Exposure, 10.1017/S1368980008002140. Data date range 24 Beydoun, M. A., Powell, L. M., Wang, Y. The association of fast food, fruit and vegetable prices with dietary intakes among US adults: is there modification by family income?. Soc Sci Med. 2008; 66 (11):2218-29. doi: Intervention/Exposure, 10.1016/j.socscimed.2008.01.018. Data date range 25 Beydoun, M. A., Wang, Y. How do socio-economic status, perceived economic barriers and nutritional benefits affect quality of dietary intake among US adults?. Eur 26 J Clin Nutr. 2008; 62 (3):303-13. doi: 10.1038/sj.ejcn.1602700. Data date range Bouis, H. E., Eozenou, P., Rahman, A. Food prices, household income, and resource allocation: Socioeconomic perspectives on their effects on dietary quality and nutritional status. Food and Nutrition Bulletin. 2011; 32 (1):S14-S23. doi: 27 10.1177/15648265110321S103. Country Brewster, P. J., Durward, C. M., Hurdle, J. F., Stoddard, G. J., Guenther, P. M. The Grocery Purchase Quality Index-2016 Performs Similarly to the Healthy Eating Index-2015 in a National Survey of Household Food Purchases. J Acad Nutr Diet. 2019; 28 119 (1):45-56. doi: 10.1016/j.jand.2018.08.165. Intervention/Exposure Brewster, P. J., Guenther, P. M., Jordan, K. C., Hurdle, J. F. The Grocery Purchase Quality Index-2016: An innovative approach to assessing grocery food purchases. Journal of Food Composition and Analysis. 2017; 64:119-126. doi: 10.1016/j.jfca.2017.07.012. 29 Intervention/Exposure Carlson, A., Dong, D. S., Lino, M. Association between Total Diet Cost and Diet Quality Is Limited. Journal of Agricultural and Resource Economics. 2014; 39 (1):47-30 Data date range Carlson, A., Frazao, E. Food costs, diet quality and energy balance in the United States. Physiology & Behavior. 2014; 134:20-31. doi: 10.1016/j.physbeh.2014.03.001. 31 Data date range

#	Bibliography	Exclusion rationale
	Carlson, Andrea, Dong, Diansheng, Lino, Mark. ARE THE TOTAL DAILY COST OF	
	FOOD AND DIET QUALITY RELATED: A RANDOM EFFECTS PANEL DATA	
32	ANALYSIS 2010; :25. doi: 10.22004/ag.econ.116395.	Data date range
	Carlson, Andrea, Lino, Mark, Fungwe, Thomas V., Guenther, Patricia M. Eating a	
33	Healthy Diet: Is Cost a Major Factor? 2009; doi: 10.22004/ag.econ.49259.	Data date range
	Caspi, C. E., Lenk, K., Pelletier, J. E., Barnes, T. L., Harnack, L., Erickson, D. J., Laska,	
	M. N. Association between store food environment and customer purchases in small	
	grocery stores, gas-marts, pharmacies and dollar stores. Int J Behav Nutr Phys Act.	
34	2017; 14 (1):76. doi: 10.1186/s12966-017-0531-x.	Intervention/Exposure
	Chen, Xiu, Kaiser, Harry M., Rickard, Bradley J. The Salience of Excise vs Sales	
0.5	Taxes on Healthy Eating: An Experimental Study 2014; :39. doi:	0.1
35	10.22004/ag.econ.180111.	Outcome
	Chrisinger, B. W., Kallan, M. J., Whiteman, E. D., Hillier, A. Where do U.S. households	
	purchase healthy foods? An analysis of food-at-home purchases across different types of retailers in a nationally representative dataset. Prev Med. 2018; 112:15-22.	
36	doi: 10.1016/j.ypmed.2018.03.015.	Intervention/Exposure
30	Clark, R. L.,Famodu, O. A.,Barr, M. L.,Hagedorn, R. L.,Ruseski, J.,White, J.	intervention/Exposure
	A., Warner, C. M., Morrell, A. M., Murray, P. J., Olfert, I. M., McFadden, J. W., Downes,	
	M. T., Colby, S. E., Olfert, M. D. Monetary Cost of the MyPlate Diet in Young Adults:	
	Higher Expenses Associated with Increased Fruit and Vegetable Consumption. J Nutr	
37	Metab. 2019; 2019 :2790963. doi: 10.1155/2019/2790963.	Outcome
	Collins, A. M., Klerman, J. A. Improving Nutrition by Increasing Supplemental Nutrition	
	Assistance Program Benefits. Am J Prev Med. 2017; 52 (2S2):S179-S185. doi:	
38	10.1016/j.amepre.2016.08.032.	Outcome
	Courtemanche, Charles, Denteh, Augustine, Tchernis, Rusty. Estimating the	
	Associations between SNAP and Food Insecurity, Obesity, and Food Purchases with	
	Imperfect Administrative Measures of Participation. Southern Economic Journal.	
39	2019; 86 (1):202-228. doi: 10.1002/soej.12364.	Intervention/Exposure
	Crane, M. M., Tangney, C. C., French, S. A., Wang, Y., Appelhans, B. M. Gender	
	Comparison of the Diet Quality and Sources of Food Purchases Made by Urban	
40	Primary Household Food Purchasers. J Nutr Educ Behav. 2019; 51 (2):199-204. doi: 10.1016/j.inch.2019.07.016	Intervention/Evaceure
40	10.1016/j.jneb.2018.07.016. D'Angelo, H.,Suratkar, S.,Song, H. J.,Stauffer, E.,Gittelsohn, J. Access to food	Intervention/Exposure
	source and food source use are associated with healthy and unhealthy food-	
	purchasing behaviours among low-income African-American adults in Baltimore City.	
41	Public Health Nutrition. 2011; 14 (9):1632-1639. doi: 10.1017/S1368980011000498.	Outcome
	Darmon, N., Lacroix, A., Muller, L., Ruffieux, B. Food price policies improve diet quality	
	while increasing socioeconomic inequalities in nutrition. Int J Behav Nutr Phys Act.	
42	2014; 11 :66. doi: 10.1186/1479-5868-11-66.	Outcome
	Davis, G. C., Carlson, A. The inverse relationship between food price and energy	
	density: is it spurious?. Public Health Nutr. 2015; 18 (6):1091-7. doi:	
43	10.1017/S1368980014001098.	Outcome
	Deierlein, A. L., Morland, K. B., Scanlin, K., Wong, S., Spark, A. Diet quality of urban	
	older adults age 60 to 99 years: the Cardiovascular Health of Seniors and Built	
	Environment Study. J Acad Nutr Diet. 2014; 114 (2):279-87. doi:	
44	10.1016/j.jand.2013.09.002.	Intervention/Exposure
	Dellava, Jocilyn E,Bulik, Cynthia M,Popkin, Barry M. Price changes alone are not	
	adequate to produce long-term dietary change. The Journal of nutrition. 2010; 140	
45	(10):1887-1891.	Country
	Dhakal, C. K., Khadka, S. Heterogeneities in Consumer Diet Quality and Health	
40	Outcomes of Consumers by Store Choice and Income. Nutrients. 2021; 13 (4) doi:	Intervention/Function
46	10.3390/nu13041046.	Intervention/Exposure

#	Bibliography	Exclusion rationale
	Drewnowski, A. Nutrient density: addressing the challenge of obesity. Br J Nutr.	
47	2018; 120 (s1):S8-S14. doi: 10.1017/S0007114517002240.	Study design
-	Drewnowski, A. Nutrition Economics: How to Eat Better for Less. J Nutr Sci Vitaminol	
48	(Tokyo). 2015; 61 Suppl :S69-71. doi: 10.3177/jnsv.61.S69.	Study design
	Drewnowski, A. The economics of food choice behavior: why poverty and obesity are	
49	linked. Nestle Nutr Inst Workshop Ser. 2012; 73:95-112. doi: 10.1159/000341303.	Outcome, Study design
	Drewnowski, A., Kawachi, I. Diets and Health: How Food Decisions Are Shaped by	
	Biology, Economics, Geography, and Social Interactions. Big Data. 2015; 3 (3):193-	
50	197. doi: 10.1089/big.2015.0014.	Study design
	D'Souza, Anna, Jolliffe, Dean. Food Insecurity in Vulnerable Populations: Coping with	
	Food Price Shocks in Afghanistan. American Journal of Agricultural Economics.	_
51	2014; 96 (3):790-812. doi: 10.1093/ajae/aat089.	Country
	Duffey, K. J., Gordon-Larsen, P., Shikany, J. M., Guilkey, D., Jacobs, D. R., Jr., Popkin,	
	B. M. Food price and diet and health outcomes: 20 years of the CARDIA Study. Arch	
52	Intern Med. 2010; 170 (5):420-6. doi: 10.1001/archinternmed.2009.545.	Data date range
	Egeland, G. M., Williamson-Bathory, L., Johnson-Down, L., Sobol, I. Traditional food	
	and monetary access to market-food: correlates of food insecurity among Inuit	
E 2	preschoolers. Int J Circumpolar Health. 2011; 70 (4):373-83. doi:	Country
53	10.3402/ijch.v70i4.17836.	Country
	Emond, J. A., Madanat, H. N., Ayala, G. X. Do Latino and non-Latino grocery stores differ in the availability and affordability of healthy food items in a low-income,	
	metropolitan region?. Public Health Nutrition. 2012; 15 (2):360-369. doi:	Intervention/Exposure,
54	10.1017/\$1368980011001169.	Outcome
	Epstein, L. H., Finkelstein, E. A., Katz, D. L., Jankowiak, N., Pudlewski, C., Paluch, R. A.	Outcome
	Effects of nutrient profiling and price changes based on NuVal(R) scores on food	
	purchasing in an online experimental supermarket. Public Health Nutr. 2016; 19	
55	(12):2157-64. doi: 10.1017/S1368980015002931.	Outcome
	Ford, C. N., Poti, J. M., Ng, S. W., Popkin, B. M. SSB taxes and diet quality in US	
	preschoolers: estimated changes in the 2010 Healthy Eating Index. Pediatr Obes.	
56	2017; 12 (2):146-154. doi: 10.1111/ijpo.12121.	Intervention/Exposure
	Forrestal, S., Potamites, E., Guthrie, J., Paxton, N. Associations among Food Security,	
	School Meal Participation, and Students' Diet Quality in the First School Nutrition and	
57	Meal Cost Study. Nutrients. 2021; 13 (2) doi: 10.3390/nu13020307.	Intervention/Exposure
	Franckle, R. L., Thorndike, A. N., Moran, A. J., Hou, T., Blue, D., Greene, J. C., Bleich, S.	
	N., Block, J. P., Polacsek, M., Rimm, E. B. Supermarket Purchases Over the	
	Supplemental Nutrition Assistance Program Benefit Month: A Comparison Between	
50	Participants and Nonparticipants. Am J Prev Med. 2019; 57 (6):800-807. doi:	2 .
58	10.1016/j.amepre.2019.07.025.	Outcome
	Freedman, D. A., Bell, B. A., Clark, J., Ngendahimana, D., Borawski, E., Trapl, E., Pike,	
	S., Sehgal, A. R. Small Improvements in an Urban Food Environment Resulted in No	
59	Changes in Diet Among Residents. J Community Health. 2021; 46 (1):1-12. doi: 10.1007/s10900-020-00805-z.	Intervention/Exposure
<u> </u>	French, S. A., Tangney, C. C., Crane, M. M., Wang, Y., Appelhans, B. M. Nutrition	intervention/Exposure
	quality of food purchases varies by household income: the SHoPPER study. BMC	
60	Public Health. 2019; 19 (1):231. doi: 10.1186/s12889-019-6546-2.	Outcome
	French, S. A., Wall, M., Mitchell, N. R., Shimotsu, S. T., Welsh, E. Annotated receipts	
	capture household food purchases from a broad range of sources. Int J Behav Nutr	
61	Phys Act. 2009; 6:37. doi: 10.1186/1479-5868-6-37.	Outcome
	Fulgoni, V., 3rd, Drewnowski, A. An Economic Gap Between the Recommended	
	Healthy Food Patterns and Existing Diets of Minority Groups in the US National	
	Health and Nutrition Examination Survey 2013-14. Front Nutr. 2019; 6:37. doi:	
62	10.3389/fnut.2019.00037.	Outcome

Bibliography Exclusion rationale Gao, Zhifeng, Yu, Xiaohua, Lee, Jong-Ying. Consumer demand for diet quality: evidence from the healthy eating index Consumer demand for diet quality: evidence from the healthy eating index. Australian Journal of Agricultural & Resource Economics. 2013; 57 (3):301-319. doi: 10.1111/j.1467-8489.2012.00619.x. 63 Intervention/Exposure Glickman, A. R., Clark, J. K., Freedman, D. A. A relational approach to evaluate food environments finds that the proximate food environment matters for those who use it. Health Place. 2021; 69:102564. doi: 10.1016/j.healthplace.2021.102564. Intervention/Exposure Gregory, Christian, Ver Ploeg, Michele, Andrews, Margaret, Coleman-Jensen, Alisha. Supplemental Nutrition Assistance Program (SNAP) Participation Leads to Modest Changes in Diet Quality. . 2013; :36. doi: 10.22004/ag.econ.262225. Intervention/Exposure 65 Guenther, P. M., Luick, B. R. Improved Overall Quality of Diets Reported by Expanded Food and Nutrition Education Program Participants in the Mountain Region. J Nutr Educ Behav. 2015; 47 (5):421-6 e1. doi: 10.1016/j.jneb.2015.05.001. 66 Comparator Gustafson, A., Jilcott Pitts, S., McDonald, J., Ford, H., Connelly, P., Gillespie, R., Liu, E., Bush, H., Brancato, C., Babatande, T., Mullins, J. Direct Effects of the Home, School, and Consumer Food Environments on the Association between Food Purchasing Patterns and Dietary Intake among Rural Adolescents in Kentucky and North Carolina, 2017. Int J Environ Res Public Health. 2017; 14 (10) doi: 67 10.3390/ijerph14101255. Outcome Hakansson, A., Andersson, H. S., Granfeldt, Y. Diet inequality prevails among consumers interested and knowledgeable in nutrition. Food Nutr Res. 2015; 59 :27601. doi: 10.3402/fnr.v59.27601. 68 Outcome Hamad, R., Templeton, Z. S., Schoemaker, L., Zhao, M., Bhattacharya, J. Comparing demographic and health characteristics of new and existing SNAP recipients: application of a machine learning algorithm. Am J Clin Nutr. 2019; 109 (4):1164-1172. doi: 10.1093/ajcn/ngy355. 69 Intervention/Exposure Han, H. Y., Paquet, C., Dube, L., Nielsen, D. E. Diet Quality and Food Prices Modify Associations between Genetic Susceptibility to Obesity and Adiposity Outcomes. 70 Nutrients. 2020; 12 (11) doi: 10.3390/nu12113349. Country Harnack, L., Oakes, J. M., Elbel, B., Beatty, T., Rydell, S., French, S. Effects of Subsidies and Prohibitions on Nutrition in a Food Benefit Program: A Randomized Clinical Trial. JAMA Intern Med. 2016; 176 (11):1610-1618. doi: Intervention/Exposure, 71 10.1001/jamainternmed.2016.5633. Outcome Hatzenbuehler, Patrick L., Gillespie, Jeffrey M., O'Neil, Carol E. The Cost of Dietary Variety: A Case of Fruit and Vegetables. Journal of Food Distribution Research. 2011; 42 (3):1-13. 72 Outcome Hilmers, A., Chen, T. A., Dave, J. M., Thompson, D., Cullen, K. W. Supplemental Nutrition Assistance Program participation did not help low income Hispanic women in Texas meet the dietary guidelines. Prev Med. 2014: 62:44-8. doi: Intervention/Exposure. 10.1016/j.ypmed.2014.01.016. Outcome Huffman, F. G., Vaccaro, J. A., Zarini, G. G., Dixon, Z. Comparison of Two Indices of Diet Quality with Acculturation Factors and Demographics in Haitian Americans. Ecology of Food and Nutrition. 2014; 53 (1):42-57. doi: 10.1080/03670244.2013.774674. Intervention/Exposure Hyder, J. A., Thomson, C. A., Natarajan, L., Madlensky, L., Pu, M., Emond, J., Kealey, S., Rock, C. L., Flatt, S. W., Pierce, J. P., Whel Study Group. Adopting a plant-based diet minimally increased food costs in WHEL Study. Am J Health Behav. 2009; 33 Outcome, Data date (5):530-9. doi: 10.5993/ajhb.33.5.6. range Jahns, L., McDonald, L., Wadsworth, A., Morin, C., Liu, Y., Nicklas, T. Barriers and facilitators to following the Dietary Guidelines for Americans reported by rural, Northern Plains American-Indian children. Public Health Nutr. 2015; 18 (3):482-9. Intervention/Exposure, 76 doi: 10.1017/S136898001400041X. Outcome

Bibliography Exclusion rationale

#	Bibliography	Exclusion rationale
	Jetter, K. M., Adkins, J., Cortez, S., Hopper, G. K., Jr., Shively, V., Styne, D. M. Yes We	
	Can: Eating Healthy on a Limited Budget. J Nutr Educ Behav. 2019; 51 (3):268-276.	Intervention/Exposure,
77	doi: 10.1016/j.jneb.2018.12.002.	Outcome
	Jilcott Pitts, S. B., Wu, Q., Truesdale, K. P., Rafferty, A. P., Haynes-Maslow, L., Boys, K.	
	A.,McGuirt, J. T.,Fleischhacker, S.,Johnson, N.,Kaur, A. P.,Bell, R. A.,Ammerman, A.	
	S.,Laska, M. N. A four-year observational study to examine the dietary impact of the	
	North Carolina Healthy Food Small Retailer Program, 2017-2020. Int J Behav Nutr	
78	Phys Act. 2021; 18 (1):44. doi: 10.1186/s12966-021-01109-8.	Intervention/Exposure
	Keim, N. L., Forester, S. M., Lyly, M., Aaron, G. J., Townsend, M. S. Vegetable variety	
	is a key to improved diet quality in low-income women in California. J Acad Nutr Diet.	Intervention/Exposure,
79	2014; 114 (3):430-5. doi: 10.1016/j.jand.2013.07.026.	Outcome
	Kell, K. P., Judd, S. E., Pearson, K. E., Shikany, J. M., Fernandez, J. R. Associations	
	between socio-economic status and dietary patterns in US black and white adults.	later continue /France.com
00	British Journal of Nutrition. 2015; 113 (11):1792-1799. doi:	Intervention/Exposure,
_80	10.1017/S0007114515000938.	Outcome
	Kern, D. M., Auchincloss, A. H., Robinson, L. F., Stehr, M. F., Pham-Kanter, G. Healthy and Unhealthy Food Prices across Neighborhoods and Their Association with	
	Neighborhood Socioeconomic Status and Proportion Black/Hispanic. Journal of	
	Urban Health-Bulletin of the New York Academy of Medicine. 2017; 94 (4):494-505.	
81	doi: 10.1007/s11524-017-0168-8.	Outcome
01	Kern, D. M., Auchincloss, A. H., Stehr, M. F., Roux, A. V. D., Moore, L. V., Kanter, G.	Odicome
	P.,Robinson, L. F. Neighborhood Prices of Healthier and Unhealthier Foods and	
	Associations with Diet Quality: Evidence from the Multi-Ethnic Study of	
	Atherosclerosis. Int J Environ Res Public Health. 2017; 14 (11) doi:	Intervention/Exposure,
82	10.3390/ijerph14111394.	Comparator
	Klassen, A. C., Smith, K. C., Black, M. M., Caulfield, L. E. Mixed method approaches to	•
	understanding cancer-related dietary risk reduction among public housing residents. J	Intervention/Exposure,
83	Urban Health. 2009; 86 (4):624-40. doi: 10.1007/s11524-009-9352-9.	Data date range
	Kroshus, E. Gender, marital status, and commercially prepared food expenditure. J	
84	Nutr Educ Behav. 2008; 40 (6):355-60. doi: 10.1016/j.jneb.2008.05.012.	Outcome
	Leone, A. F., Rigby, S., Betterley, C., Park, S., Kurtz, H., Johnson, M. A., Lee, J. S. Store	
	type and demographic influence on the availability and price of healthful foods, Leon	-
85	County, Florida, 2008. Prev Chronic Dis. 2011; 8 (6):A140.	Outcome
	Liese, A. D., Ma, X., Hutto, B., Sharpe, P. A., Bell, B. A., Wilcox, S. Food Shopping and	
	Acquisition Behaviors in Relation to BMI among Residents of Low-Income	
00	Communities in South Carolina. Int J Environ Res Public Health. 2017; 14 (9) doi:	0.1
86	10.3390/ijerph14091075.	Outcome
07	Lin, Biing-Hwan. Nutrition and Health Characteristics of Low-Income Populations:	Data data ranga
87	Healthy Eating Index 2005; :4. doi: 10.22004/ag.econ.33617.	Data date range
	Litvak, J., Parekh, N., Juul, F., Deierlein, A. Food assistance programs and income are associated with the diet quality of grocery purchases for households consisting of	
	women of reproductive age or young children. Prev Med. 2020; 138 :106149. doi:	
88	10.1016/j.ypmed.2020.106149.	Intervention/Exposure
	Mabli J, Castner L, Ohls J, Fox MK, Crepinsek MK, Condon E. Food Expenditures	morvomon, Exposure
89	and Diet Quality Among Low-Income Households and Individuals 2010;	Data date range
	Maillot, M.,Drewnowski, A. Energy allowances for solid fats and added sugars in	- and date fallige
	nutritionally adequate U.S. diets estimated at 17-33% by a linear programming model.	
90	J Nutr. 2011; 141 (2):333-40. doi: 10.3945/jn.110.131920.	Outcome
	Mancino, Lisa, Todd, Jessica E., Scharadin, Benjamin. USDA's National Household	
	Food Acquisition and Purchase Survey: Methodology for Imputing Missing Quantities	
	To Calculate Healthy Eating Index-2010 Scores and Sort Foods Into ERS Food	Intervention/Exposure,
91	Groups 2018; doi: 10.22004/ag.econ.276252.	Comparator
	· · · · · · · · · · · · · · · · · · ·	L

#	Bibliography	Exclusion rationale
	Masset, G., Monsivais, P., Maillot, M., Darmon, N., Drewnowski, A. Diet optimization	
00	methods can help translate dietary guidelines into a cancer prevention food plan. J	Outron
92	Nutr. 2009; 139 (8):1541-8. doi: 10.3945/jn.109.104398. McClain, A. C., Tucker, K. L., Falcon, L. M., Mattei, J. Food insecurity and dietary	Outcome
	intake by Supplemental Nutrition Assistance Program participation status among	
	mainland US Puerto Rican adults after the 2009 American Recovery and	
	Reinvestment Act. Public Health Nutrition. 2019; 22 (16):2989-2998. doi:	
93	10.1017/S1368980019002209.	Intervention/Exposure
	McCurley, J. L., Levy, D. E., Rimm, E. B., Gelsomin, E. D., Anderson, E. M., Sanford, J.	
	M., Thorndike, A. N. Association of Worksite Food Purchases and Employees' Overall	
04	Dietary Quality and Health. Am J Prev Med. 2019; 57 (1):87-94. doi:	Intervention/Exposure
94	10.1016/j.amepre.2019.02.020. McDaniel, J. C.,Belury, M. A. Are young adults following the dietary guidelines for	Intervention/Exposure
	Americans?. Nurse Pract. 2012; 37 (5):1-9. doi:	
95	10.1097/01.NPR.0000413484.90121.d8.	Outcome
	McDermott, A. J., Stephens, M. B. Cost of eating: whole foods versus convenience	
96	foods in a low-income model. Fam Med. 2010; 42 (4):280-4.	Outcome
	Middaugh, A. L., Fisk, P. S., Brunt, A., Rhee, Y. S. Few Associations between Income	
	and Fruit and Vegetable Consumption. Journal of Nutrition Education and Behavior.	Intervention/Exposure,
97	2012; 44 (3):196-203. doi: 10.1016/j.jneb.2011.10.003.	Outcome
	Molitor, F., Doerr, C., Pugliese, J., Whetstone, L. Three-year trends in dietary behaviours among mothers, teenagers and children from SNAP-Ed (Supplemental	
	Nutrition Assistance Program-Education) eligible households across California. Public	
98	Health Nutr. 2020; 23 (1):3-12. doi: 10.1017/S1368980019003197.	Intervention/Exposure
	Monsivais, P., Aggarwal, A., Drewnowski, A. Following federal guidelines to increase	
	nutrient consumption may lead to higher food costs for consumers. Health Aff	
99	(Millwood). 2011; 30 (8):1471-7. doi: 10.1377/hlthaff.2010.1273.	Outcome
	Monsivais, P., Drewnowski, A. Lower-energy-density diets are associated with higher	5. 5. 1.
400	monetary costs per kilocalorie and are consumed by women of higher socioeconomic	Outcome, Data date
100	status. J Am Diet Assoc. 2009; 109 (5):814-22. doi: 10.1016/j.jada.2009.02.002. Monsivais, P.,Perrigue, M. M.,Adams, S. L.,Drewnowski, A. Measuring diet cost at	range
	the individual level: a comparison of three methods. Eur J Clin Nutr. 2013; 67	
101	(11):1220-5. doi: 10.1038/ejcn.2013.176.	Outcome
	Mulik, K., Haynes-Maslow, L. The Affordability of MyPlate: An Analysis of SNAP	
	Benefits and the Actual Cost of Eating According to the Dietary Guidelines. J Nutr	Outcome, Multiple food
102	Educ Behav. 2017; 49 (8):623-631 e1. doi: 10.1016/j.jneb.2017.06.005.	groups
	Mulik, Kranti, Haynes Maslow, Lindsey. Is MyPlate really Affordable? An analysis of	
102	SNAP Benefits and the actual cost of eating according to the dietary guidelines	Intervention/Exposure,
103	2016; doi: 10.22004/ag.econ.235924. Nicklas, T. A., Jahns, L., Bogle, M. L., Chester, D. N., Giovanni, M., Klurfeld, D.	Outcome
	M.,Laugero, K.,Liu, Y.,Lopez, S.,Tucker, K. L. Barriers and facilitators for consumer	
	adherence to the dietary guidelines for Americans: the HEALTH study. J Acad Nutr	
104	Diet. 2013; 113 (10):1317-31. doi: 10.1016/j.jand.2013.05.004.	Outcome
	O'Keeffe, M., Jansen, C., Martin, L., Williams, M., Seamark, L., Staudacher, H. M., Irving,	
	P. M., Whelan, K., Lomer, M. C. Long-term impact of the low-FODMAP diet on	
	gastrointestinal symptoms, dietary intake, patient acceptability, and healthcare	latement's st
105	utilization in irritable bowel syndrome. Neurogastroenterol Motil. 2018; 30 (1) doi:	Intervention/Exposure,
105	10.1111/nmo.13154. Parker, H. W., de Araujo, C., Thorndike, A. N., Vadiveloo, M. K. The utility of household	Outcome
	Grocery Purchase Quality Index scores as an individual diet quality metric. Br J Nutr.	
106	2020; :1-9. doi: 10.1017/\$0007114520004833.	Intervention/Exposure
	Parum, Faith, Dharmasena, Senarath. U.S. Consumers' Intake of Food at Home	1
	(FAH) and Food Away from Home (FAFH) As a Complex Economic System. Journal	
107	of Food Distribution Research. 2021; 52 (1):77-85.	Outcome

Bibliography Exclusion rationale

	Ranjit, N., Macias, S., Hoelscher, D. Factors related to poor diet quality in food	
	insecure populations. Transl Behav Med. 2020; 10 (6):1297-1305. doi:	_
108	10.1093/tbm/ibaa028.	Outcome
	Rehm, C. D., Drewnowski, A. Replacing American Breakfast Foods with Ready-To-	
	Eat (RTE) Cereals Increases Consumption of Key Food Groups and Nutrients among	
	US Children and Adults: Results of an NHANES Modeling Study. Nutrients. 2017; 9	
109	(9) doi: 10.3390/nu9091010.	Comparator
	Rehm, C. D., Monsivais, P., Drewnowski, A. The quality and monetary value of diets	
	consumed by adults in the United States. Am J Clin Nutr. 2011; 94 (5):1333-9. doi:	
110	10.3945/ajcn.111.015560.	Data date range
	Richardson, A. S., Collins, R. L., Ghosh-Dastidar, B., Ye, F., Hunter, G. P., Baird, M.	-
	D., Schwartz, H., Sloan, J. C., Nugroho, A., Beckman, R., Troxel, W. M., Gary-Webb, T.	
	L., Dubowitz, T. Improvements in Neighborhood Socioeconomic Conditions May	
	Improve Resident Diet. Am J Epidemiol. 2021; 190 (5):798-806. doi:	
111	10.1093/aje/kwaa220.	Intervention/Exposure
	Robert Wood Johnson Foundation. Improving the Health of All Americans through	Study design,
112	Better Nutrition nd;	Pubilcation status
	Robinson, Courtney N.,Baker, Gregory A.,Harwood, Michael J.,Diekmann, Lucy O.	
	Food expenditures and consumption by food bank clients in Silicon Valley.	
	International Food & Agribusiness Management Review. 2020; 23 (4):619-632. doi:	
113	10.22434/IFAMR2019.0125.	Outcome
	Rogus, S. Examining the influence of perceived and objective time constraints on the	
	quality of household food purchases. Appetite. 2018; 130 :268-273. doi:	
114	10.1016/j.appet.2018.08.025.	Intervention/Exposure
	Ryden, P. J., Hagfors, L. Diet cost, diet quality and socio-economic position: how are	,
	they related and what contributes to differences in diet costs?. Public Health Nutrition.	
115	2011; 14 (9):1680-1692. doi: 10.1017/S1368980010003642.	Country
	Scharadin, B., Yu, Y., Jaenicke, E. C. Household time activities, food waste, and diet	Ž
	quality: the impact of non-marginal changes due to COVID-19. Rev Econ Househ.	
116	2021; :1-30. doi: 10.1007/s11150-021-09555-w.	Intervention/Exposure
	Schreiner, N., Perazzo, J., Digenarro, S., Currie, J., Daly, B., Webel, A. Examining the	•
	Association between Item Specific Treatment Burden and Adherence in People Living	
117	with HIV. West J Nurs Res. 2020; 42 (7):495-502. doi: 10.1177/0193945919880317.	Intervention/Exposure
	Sheldon, M., Gans, K. M., Tai, R., George, T., Lawson, E., Pearlman, D. N. Availability,	
	affordability, and accessibility of a healthful diet in a low-income community, Central	
118	Falls, Rhode Island, 2007-2008. Prev Chronic Dis. 2010; 7 (2):A43.	Outcome
	Silver, L. D., Ng, S. W., Ryan-Ibarra, S., Taillie, L. S., Induni, M., Miles, D. R., Poti, J.	
	M., Popkin, B. M. Changes in prices, sales, consumer spending, and beverage	
	consumption one year after a tax on sugar-sweetened beverages in Berkeley,	
	California, US: A before-and-after study. PLoS Med. 2017; 14 (4):e1002283. doi:	
119	10.1371/journal.pmed.1002283.	Outcome
	Smith, T. A., Valizadeh, P., Lin, B. H., Coats, E. What is driving increases in dietary	
	quality in the United States?. Food Policy. 2019; 86 doi:	
120	10.1016/j.foodpol.2019.05.003.	Intervention/Exposure
•	Sogari, Giovanni, Velez-Argumedo, Catalina, Gómez, Miguel I., Mora, Cristina. College	
	Students and Eating Habits: A Study Using An Ecological Model for Healthy	
121	Behavior 2019; doi: 10.22004/ag.econ.300040.	Outcome
	Sturm, R., Datar, A. Regional price differences and food consumption frequency	
	among elementary school children. Public Health. 2011; 125 (3):136-41. doi:	
122	10.1016/j.puhe.2010.11.016.	Outcome
		2 3.00.110

Bibliography Exclusion rationale Surkan, P. J., Coutinho, A. J., Christiansen, K., Dennisuk, L. A., Suratkar, S., Mead, E., Sharma, S., Gittelsohn, J. Healthy food purchasing among African American youth: associations with child gender, adult caregiver characteristics and the home food environment. Public Health Nutrition. 2011; 14 (4):670-677. doi: 10.1017/S136898001000251X. Outcome Tiwari, A., Aggarwal, A., Tang, W., Drewnowski, A. Cooking at Home: A Strategy to Comply With U.S. Dietary Guidelines at No Extra Cost. Am J Prev Med. 2017; 52 (5):616-624. doi: 10.1016/j.amepre.2017.01.017. Comparator Tran, L. T., Brewster, P. J., Chidambaram, V., Hurdle, J. F. Towards Measuring the Food Quality of Grocery Purchases: an Estimation Model of the Healthy Eating Index-2010 Using only Food Item Counts. Procedia Food Sci. 2015; 4:148-159. doi: 125 10.1016/j.profoo.2015.06.020. Intervention/Exposure Vadiveloo, M. K., Parker, H. W., Juul, F., Parekh, N. Sociodemographic Differences in the Dietary Quality of Food-at-Home Acquisitions and Purchases among Participants in the U.S. Nationally Representative Food Acquisition and Purchase Survey (FoodAPS). Nutrients. 2020; 12 (8) doi: 10.3390/nu12082354. Intervention/Exposure Vadiveloo, M., Guan, X., Parker, H. W., Perraud, E., Buchanan, A., Atlas, S., Thorndike, A. N. Effect of Personalized Incentives on Dietary Quality of Groceries Purchased: A Randomized Crossover Trial. JAMA Netw Open. 2021; 4 (2):e2030921. doi: Intervention/Exposure, 10.1001/jamanetworkopen.2020.30921. Outcome Vadiveloo, M., Perraud, E., Parker, H. W., Juul, F., Parekh, N. Geographic Differences in the Dietary Quality of Food Purchases among Participants in the Nationally Representative Food Acquisition and Purchase Survey (FoodAPS). Nutrients. 2019; Intervention/Exposure 11 (6) doi: 10.3390/nu11061233. Vilaro, M. J., Barnett, T. E., Mathews, A., Pomeranz, J., Curbow, B. Income differences in social control of eating behaviors and food choice priorities among southern rural women in the US: A qualitative study. Appetite. 2016; 107:604-612. doi: 10.1016/j.appet.2016.09.003. Outcome Vogel, C., Ntani, G., Inskip, H., Barker, M., Cummins, S., Cooper, C., Moon, G., Baird, J. Education and the Relationship Between Supermarket Environment and Diet. Am J Prev Med. 2016; 51 (2):e27-e34. doi: 10.1016/j.amepre.2016.02.030. Country Volpe, Richard, Cai, Xiaowei, Schroeter, Christiane, Mancino, Lisa, Adherence to Dietary Recommendations and Food Retail Market Structure: Is There a Connection?. Journal of Agricultural & Food Industrial Organization. 2020; :1. doi: 10.1515/jafio-Outcome Wang, M., Levi, R., Seligman, H. New SNAP Eligibility in California Associated With Improved Food Security and Health. Prev Chronic Dis. 2021; 18:E28. doi: Intervention/Exposure, 10.5888/pcd18.200587. Outcome Weatherspoon, D. D., Miller, S. R., Steele, M. E., Newkirk, C. J., Santiago, O., Dembele, A. S., Hoerr, S. L. What Social, Program, and Behavioral Factors Influence the Healthy Eating Index for EFNEP and SNAP-Ed Adult Participants?. Am J Lifestyle Med. 2017; 11 (4):344-353. doi: 10.1177/1559827615607194. Intervention/Exposure Whiteman, E. D., Chrisinger, B. W., Hillier, A. Diet Quality Over the Monthly Supplemental Nutrition Assistance Program Cycle. Am J Prev Med. 2018; 55 (2):205-Intervention/Exposure, 212. doi: 10.1016/j.amepre.2018.04.027. Outcome Wilcox, S., Sharpe, P. A., Liese, A. D., Dunn, C. G., Hutto, B. Socioeconomic factors associated with diet quality and meeting dietary guidelines in disadvantaged neighborhoods in the Southeast United States. Ethn Health. 2020; 25 (8):1115-1131. doi: 10.1080/13557858.2018.1493434. Intervention/Exposure Wilde, Parke E., Llobrera, Joseph. Using the Thrifty Food Plan to Assess the Cost of a Nutritious Diet. Journal of Consumer Affairs. 2009; 43 (2):274-304. doi: 10.1111/j.1745-6606.2009.01140.x. Outcome

#	Bibliography	Exclusion rationale
	Willits-Smith, A., Aranda, R., Heller, M. C., Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet Health. 2020; 4 (3):e98-e106. doi: 10.1016/S2542-	
137	5196(20)30055-3.	Intervention/Exposure
	You, W., Zhang, G., Davy, B. M., Carlson, A., Lin, B. H. Food consumed away from home can be a part of a healthy and affordable diet. J Nutr. 2009; 139 (10):1994-9.	
138	doi: 10.3945/jn.109.107615.	Data date range
	Young, C. M., Batch, B. C., Svetkey, L. P. Effect of socioeconomic status on food availability and cost of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern. J Clin Hypertens (Greenwich). 2008; 10 (8):603-11. doi: 10.1111/j.1751-	Outcome, Multiple food
139	7176.2008.08199.x.	groups

Appendix 4-a: Literature search strategy for the rapid review on income and time spent on food-at-home-related activities

Database: PubMed

Vendor: National Library of Medicine

Date of Search: 5/3/2021

Limits Used: Filters: Language English Publication Dates 2008 - 2021

Total = 2,401

Search #	Concept	Search String	N
#1	Income	("Income"[Mesh] OR income*[tiab] OR "Socioeconomic Factors"[Mesh] OR socioeconomic*[tiab] OR socio-economic*[tiab] OR "social factor*"[tiab] OR "social condition*"[tiab] OR poverty[tiab] OR "Residence Characteristics"[Mesh] OR "Vulnerable Populations"[Mesh] OR "vulnerable population*"[tiab] OR "underserved population*"[tiab] OR "disadvantaged population*"[tiab] OR "Race Factors"[Mesh] OR "race factor*"[tiab] OR "Ethnic Groups"[Mesh] OR "ethnic group*"[tiab] OR "ethnic population*"[tiab] OR "Cross-Cultural Comparison"[Mesh] OR "cross-cultural"[tiab] OR transcultural[tiab] OR "Cultural Characteristics"[Mesh] OR "cultural characteristic*"[tiab] OR "Cultural Diversity"[Mesh] OR "culturally diverse"[tiab] OR "Food Supply"[Mesh] OR "food desert*"[tiab] OR "food insecurit*"[tiab] OR "food environment*"[tiab] OR "food access"[tiab] OR Urban[tiab] OR Rural[tiab] OR neighborhood[tiab] OR "Census tract"[tiab] OR "census block"[tiab] OR "food assistance"[MeSH Terms] OR "food assistance"[Tiab])	1,082,156
#2	Time	("Time Factors"[MeSH] OR "Time Management"[MeSH] OR Time[tiab])	4,181,306
#3	Food Related Activities	(home*[tiab] OR domestic[tiab] OR family[tiab] OR families[tiab] OR house*[tiab]) AND ("Feeding Behavior"[Mesh] OR cooking[MeSH] OR Eating[MeSH] OR Food[MeSH] OR cook*[tiab] Or eat[tiab] OR eats[tiab] OR eating[tiab] OR eaten[tiab] OR Food[tiab] OR meal*[tiab] OR kitchen[tiab] OR clean*[tiab] OR dishwash*[tiab] OR (wash*[tiab] AND (dish[tiab] OR dishes[tiab])))	74,178
#4	#1 AND #2 AND #3		3,718
#5	Publication, Geography, and species excludes	#1 AND #2 AND #3 NOT ((letter[ptyp] OR editorial[ptyp] OR comment[ptyp] OR news[ptyp] OR "Congress"[Publication Type] OR "Consensus Development Conference"[Publication Type] OR editorial[tiab] OR commentary[tiab] OR "conference abstract*"[tiab] OR "systematic review*"[ti] OR "meta-analysis"[ptyp] OR "meta-analysis"[ti] OR	3,465

		"meta-analyses"[ti] OR "Review"[Publication Type] OR "Systematic Review"[Publication Type] OR "conference proceeding*"[tiab] OR "retracted publication"[ptyp] OR "retraction of publication"[ptyp] OR "retraction notice"[ti] OR "retracted publication"[tiab] OR "Published Erratum"[Publication Type] OR corrigenda[tiab] OR corrigendum[tiab] OR errata[tiab] OR erratum[tiab] OR protocol[ti] OR protocols[ti] OR "case report"[ti] OR "case series"[ti] OR "Case Reports" [Publication Type])	
		NOT	
		("Developing Countries"[Mesh] OR "developing countr*" OR "Under Developed Nation*" OR "low income countr*" OR "middle income countr*"OR "low-middle-income countr*" OR LMIC[tiab] OR "Europe"[Mesh] OR "Australia"[Mesh] OR "Asia"[Mesh] OR "Africa"[Mesh] OR "Mexico"[Mesh] OR "Islands"[Mesh] OR "Central America"[Mesh] OR "Latin America"[Mesh] OR "South America"[Mesh])	
)	
		NOT	
		("Animals"[Mesh] NOT	
		("Animals"[Mesh] AND "Humans"[Mesh])	
)	
#6	Filters	Filters: Language: English; Publication Dates: 2008-2021	2,401

Database: Business Source Premier

Vendor: EBSCO Date of Search: 5/3/2021

Limits Used: Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language:

English Total = 950

Search #	Concept	Search String	N
#1	Income	(DE "SOCIOECONOMIC factors") OR socioeconomic* OR socio-economic* OR "social factor*" OR "social condition*" OR (DE "POVERTY") OR poverty OR "vulnerable population*" OR "underserved population*" OR "disadvantaged population*" OR (DE "INCOME") OR income* OR "race factor*" OR (DE "ECONOMIC conditions of ethnic groups") OR "ethnic group*" OR "ethnic population*" OR "cross-cultural" OR transcultural OR "cultural characteristic*" OR "culturally diverse" OR (DE "FOOD supply") OR "food desert*" OR "food insecurit*" OR "food environment*" OR "food access" OR (DE "METROPOLITAN areas") OR Urban OR Rural OR neighborhood OR "Census tract" OR "census block" OR "food assistance"	1,177,425
#2	Time	(DE "TIME management" OR Time)	1,359,692

#3	Food Related Activities	((home* OR domestic OR family OR families OR house*) AND (DE "FOOD safety" OR cook* OR eat* OR Food OR meal* OR kitchen OR clean* OR dishwash* OR (wash* AND (dish OR dishes)))	127,582
#4	#1 AND #2 AND #3		1,856
#5	Filters	Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language: English	950

Database: Web of Science: Core Collection

Vendor: Clarivate Analytics Date of Search: 5/3/2021

Limits Used: Total = 3,545

Search #	Concept	Search String	N
#1	Income	TS=(socioeconomic* OR socio-economic* OR "social factor*" OR "social condition*" OR poverty OR "residence characteristics" OR "vulnerable population*" OR "underserved population*" OR "disadvantaged population*" OR income* OR "race factor*" OR "ethnic group*" OR "ethnic population*" OR "cross-cultural" OR transcultural OR "cultural characteristic*" OR "culturally diverse" OR "food desert*" OR "food insecurit*" OR Urban OR Rural OR neighborhood OR "Census tract" OR "census block" OR "food assistance")	1,019,047
#2	Time	TS=time	6,476,056
#3	Food Related Activities	TS=((home* OR domestic OR family OR families OR house*) AND ("FOOD safety" OR cook* OR eat* OR Food OR meal* OR kitchen OR clean* OR dishwash* OR (wash* AND (dish OR dishes))))	119,957
#4	#1 AND #2 AND #3		5,569
#5	Non-United States	CU=("developing countr*" OR "under developed nation*" OR "low i ncome countr*" OR "middle income countr*" OR "low-middle income countr*" OR LMIC OR Europe OR Australia OR Asia OR Africa OR Mexico OR Island s OR "Central America" OR "Latin America" OR "South America")	2,037,499
#6	#4 NOT #5		4,920
#7	Publication Excludes	TS=(editorial OR commentary OR "conference abstract*" OR "conference proceeding*"[tiab] OR "retraction of publication" OR "retract ed publication" OR corrigenda[tiab] OR corrigendum[tiab] OR errat a OR erratum OR "case reports") OR TI=("systematic review*" OR "meta-analysis"	708,261

		OR "meta analyses" OR protocol OR protocols OR "retraction notice" OR "case report" OR "case series")	
#8	#6 NOT #5		4,920
#9		Years: 2008-2021; Publication Types: Articles, Early Access	3,545

Grey Literature Search

Google Scholar

(Income OR resources OR poverty OR socioeconomic) AND time AND ((home OR domestic OR family OR house) AND (eating OR meals OR cooking OR cleaning OR washing dishes))

Limits: Date published: 2008-2021;

Date Searched: 5/14/2021 Results: 40, limited to 4 pages

Google

site:.gov AND (Income OR resources OR poverty OR socioeconomic) AND (time OR time spent) AND ((home OR domestic OR family) AND (meal preparation OR meals OR cooking OR cleaning))

Limits: Include Omitted results Date Searched: 5/14/2021 Results: 10, limited to 1 page

Ag Econ

Any of the words: Income resources poverty socioeconomic

AND

Any of the words: Time

AND

Any of the words: "Food at home" "at home meals" "meals at home" "cooking at home" "family cooking" "family meals" "meal preparation" "food preparation"

Limits: added since 2008 Date Searched: 5/14/2021 Results: 60, limited to 6 pages

Appendix 4-b: Excluded articles for the rapid review on income and time spent on food-at-home-related activities

The following table lists the articles excluded after full-text screening for this rapid review question. At least 1 reason for exclusion is provided for each article, though this may not reflect all possible reasons. Information about articles excluded after title and abstract screening is available upon request.

	Bibliography	Rationale for exclusion
1	Álvarez, Begoña, Miles-Touya, Daniel. Gender imbalance in housework allocation: a question of time?. Review of Economics of the Household. 2019. 17. doi: 10.1007/s11150-019-09467-w.	Country; Outcome
	Archer, E., Shook, R. P., Thomas, D. M., Church, T. S., Katzmarzyk, P. T., Hébert, J. R., McIver, K. L., Hand, G. A., Lavie, C. J., Blair, S. N 45-Year trends in women's use of time and household management energy expenditure. PLoS One. 2013. 8. doi:	Comparator;
3	10.1371/journal.pone.0056620. Beatty, T. K.,Nanney, M. S.,Tuttle, C Time to eat? The relationship between food security and food-related time use. Public Health Nutr. 2014. 17. doi: 10.1017/s1368980012005599.	Outcome Exposure
4	Beshara, M., Hutchinson, A., Wilson, C Preparing meals under time stress. The experience of working mothers. Appetite. 2010. 55. doi: 10.1016/j.appet.2010.10.003.	Country
5	Biddle, Jeff E., Hamermesh, Daniel S Income, wages and household production theory. Economics Letters. 2020. 192. doi: 10.1016/j.econlet.2020.109188.	Date; Outcome
6	Blitstein, Jonathan L., Frentz, Florentine, Jilcott Pitts, Stephanie B A Mixed-method Examination of Reported Benefits of Online Grocery Shopping in the United States and Germany: Is Health a Factor?. Journal of Food Products Marketing. 2020. 26. doi: 10.1080/10454446.2020.1754313.	Exposure
7	Bostic, S. M.,McClain, A. C Older adults' cooking trajectories: shifting skills and strategies. British Food Journal. 2017. 119. doi: 10.1108/bfj-09-2016-0436.	Outcome
8	Bowen, Sarah, Elliott, Sinikka, Brenton, Joslyn. The Joy of Cooking?. Contexts. 2014. 13. doi: 10.1177/1536504214545755.	Comparator
9	Carpio, C. E., Kalenkoski, C. M., Moyeda-Carabaza, A. F., Murimi, M The effect of time use and food cost on dietary quality. Public Health Nutrition. 2020. 23. doi: 10.1017/s1368980020001615.	Comparator
	Cason-Wilkerson, R., Goldberg, S., Albright, K., Allison, M., Haemer, M Factors influencing healthy lifestyle changes: a qualitative look at low-income families engaged in treatment for	Outcome
10 11	overweight children. Child Obes. 2015. 11. doi: 10.1089/chi.2014.0147. Cawley, J.,Liu, F Maternal employment and childhood obesity: a search for mechanisms in time use data. Econ Hum Biol. 2012. 10. doi: 10.1016/j.ehb.2012.04.009.	Exposure; Date
12	Christian, T. J Trade-offs between commuting time and health-related activities. J Urban Health. 2012. 89. doi: 10.1007/s11524-012-9678-6.	Date; Comparator
13	Connelly, Rachel, Kimmel, Jean. Spousal Economic Factors in ATUS Parents' Time Choices. Social Indicators Research. 2009. 93. doi: 10.1007/s11205-008-9403-8.	Date; Outcome
14	Connelly, Rachel, Kimmel, Jean. Spousal influences on parents' non-market time choices. Review of Economics of the Household. 2009. 7. doi: 10.1007/s11150-009-9060-y.	Date; Outcome
15	Daniels, S., Glorieux, I., Minnen, J., van Tienoven, T. P., Weenas, D Convenience on the menu? A typological conceptualization of family food expenditures and food-related time patterns. Soc Sci Res. 2015. 51. doi: 10.1016/j.ssresearch.2014.09.010.	Date; Country
16	Datar, A., Nicosia, N., Shier, V Maternal work and children's diet, activity, and obesity. Soc Sci Med. 2014. 107. doi: 10.1016/j.socscimed.2013.12.022.	Exposure; Outcome
17	Davis, G. C., You, W The Thrifty Food Plan is not thrifty when labor cost is considered. J Nutr. 2010. 140. doi: 10.3945/jn.109.119594.	Date; Study Design; Outcome

	Bibliography	Rationale for exclusion
	Davis, G. C., You, W Estimates of returns to scale, elasticity of substitution, and the thrifty	
	food plan meal poverty rate from a direct household meal production function. Food Policy.	
18	2013. 43. doi: 10.1016/j.foodpol.2013.09.002.	Date
	Davis, G. C., You, W Not enough money or not enough time to satisfy the Thrifty Food Plan?	5. 5
	A cost difference approach for estimating a money-time threshold. Food Policy. 2011. 36. doi:	Date; Exposure;
19	10.1016/j.foodpol.2010.09.001.	Outcome
20	Davis, George C., You, Wen. The time cost of food at home: general and food stamp	Doto: Evacoure
_20	participant profiles. Applied Economics. 2010. 42. doi: 10.1080/00036840801964468.	Date; Exposure
	De Backer, Charlotte J. S Family meal traditions. Comparing reported childhood food habits to current food habits among university students. Appetite. 2013. 69. doi:	Outcomo:
21	https://doi.org/10.1016/j.appet.2013.05.013.	Outcome; Country
	Devine, C. M.,Farrell, T. J.,Blake, C. E.,Jastran, M.,Wethington, E.,Bisogni, C. A Work	Country
	Conditions and the Food Choice Coping Strategies of Employed Parents. Journal of Nutrition	
22	Education and Behavior. 2009. 41. doi: 10.1016/j.jneb.2009.01.007.	Outcome
	Do, B., Wang, S. D., Naya, C. H., Dunton, G. F., Mason, T. B Momentary and personal	Catoomo
	characteristics predicting maternal fruit and vegetable preparation for children using ecological	
23	momentary assessment. Eat Behav. 2021. 41. doi: 10.1016/j.eatbeh.2021.101492.	Outcome
	Dong, K. R., Tang, A. M., Stopka, T. J., Beckwith, C. G., Must, A Food acquisition methods and	0 0.1000
	correlates of food insecurity in adults on probation in Rhode Island. PLoS One. 2018. 13. doi:	
24	10.1371/journal.pone.0198598.	Outcome
	Dunaway, L. F., Carton, T., Ma, P., Mundorf, A. R., Keel, K., Theall, K. P Beyond Food Access:	
	The Impact of Parent-, Home-, and Neighborhood-Level Factors on Children's Diets.	
	International Journal of Environmental Research and Public Health. 2017. 14. doi:	
25	10.3390/ijerph14060662.	Outcome
	Escoto, K. H., Laska, M. N., Larson, N., Neumark-Sztainer, D., Hannan, P. J Work Hours and	
	Perceived Time Barriers to Healthful Eating Among Young Adults. American Journal of Health	
26	Behavior. 2012. 36. doi: 10.5993/ajhb.36.6.6.	Exposure
	Farmer, N., Wallen, G. R., Yang, L., Middleton, K. R., Kazmi, N., Powell-Wiley, T. M Household	
	Cooking Frequency of Dinner Among Non-Hispanic Black Adults is Associated with Income	
	and Employment, Perceived Diet Quality and Varied Objective Diet Quality, HEI (Healthy	
_27	Eating Index): NHANES Analysis 2007-2010. Nutrients. 2019. 11. doi: 10.3390/nu11092057.	Outcome
00	Fisher, Kimberly, Robinson, John. Average Weekly Time Spent in 30 Basic Activities Across	-
_28	17 Countries. Social Indicators Research. 2009. 93. doi: 10.1007/s11205-008-9372-y.	Exposure
20	Gelber, Alexander M., Mitchell, Joshua W Taxes and Time Allocation: Evidence from Single	Data
_29	Women and Men. Review of Economic Studies. 2012. 79. doi: 10.1093/restud/rdr041.	Date
30	Gershuny, Jonathan, Harms, Teresa Atttracta. Housework Now Takes Much Less Time: 85 Years of US Rural Women's Time Use. Social Forces. 2016. 95. doi: 10.1093/sf/sow073.	Exposure
30	Graesch, Anthony. Material Indicators of Family Busyness. Social Indicators Research. 2009.	Lyposuie
31	93. doi: 10.1007/s11205-008-9408-3.	Outcome
<u> </u>	Gupta, Nabanita Datta, Stratton, Leslie S Examining the impact of alternative power	Julionno
	measures on individual time use in American and Danish couple households. Review of	
32	Economics of the Household. 2010. 8. doi: 10.1007/s11150-009-9073-6.	Date; Exposure
	Gupta, Sanjiv, Ash, Michael. Whose money, whose time? A nonparametric approach to	,
	modeling time spent on housework in the United States. Feminist Economics. 2008. 14. doi:	
33	10.1080/13545700701716664.	Date; Outcome
	Henry, J. L., Trude, A. C. B., Surkan, P. J., Steeves, E. A., Hopkins, L. C., Gittelsohn, J	
	Psychosocial Determinants of Food Acquisition and Preparation in Low-Income, Urban African	
	American Households. Health Education & Behavior. 2018. 45. doi:	
34	10.1177/1090198118760686.	Outcome
	Hobbes, Marieke, De Groot, Wouter T., Van Der Voet, Ester, Sarkhel, Sukanya. Freely	
	Disposable Time: A Time and Money Integrated Measure of Poverty and Freedom. World	Country; Study
35	Development. 2011. 39. doi: 10.1016/j.worlddev.2011.04.005.	Design

	Bibliography	Rationale for exclusion
	Horning, M. L., Fulkerson, J. A., Friend, S. E., Story, M Reasons Parents Buy Prepackaged,	
36	Processed Meals: It Is More Complicated Than "I Don't Have Time". J Nutr Educ Behav. 2017. 49. doi: 10.1016/j.jneb.2016.08.012.	Outcome
	Jarrett, R. L.,Bahar, O. S.,Kersh, R. T "When We Do Sit Down Together": Family Meal Times	Odtoonic
	in Low-Income African American Families With Preschoolers. Journal of Family Issues. 2016.	
37	37. doi: 10.1177/0192513x14547417.	Outcome
	Kant, A. K., Graubard, B. I Family income and education were related with 30-year time	Date;
	trends in dietary and meal behaviors of American children and adolescents. J Nutr. 2013. 143.	Comparator;
_38	doi: 10.3945/jn.112.165258.	Outcome
20	Kolodinsky, J. M., Goldstein, A. B Time use and food pattern influences on obesity. Obesity	- Evenesure
39	(Silver Spring). 2011. 19. doi: 10.1038/oby.2011.130. Kolpashnikova, Kamila. American Househusbands: New Time Use Evidence of Gender	Exposure
40	Display, 2003-2016. Social Indicators Research. 2018. 140. doi: 10.1007/s11205-017-1813-z.	Exposure
	Kornides, M. L., Nansel, T. R., Quick, V., Haynie, D. L., Lipsky, L. M., Laffel, L. M., Mehta, S. N	ZXPOOGIO
	Associations of family meal frequency with family meal habits and meal preparation	
	characteristics among families of youth with type 1 diabetes. Child Care Health Dev. 2014. 40.	
41	doi: 10.1111/cch.12078.	Outcome
	Kornrich, S., Roberts, A Household Income, Women's Earnings, and Spending on Household	5 . 6 .
42	Services, 1980-2010. Journal of Marriage and Family. 2018. 80. doi: 10.1111/jomf.12450.	Date; Outcome
	Landefeld, J. Steven, Fraumeni, Barbara M., Vojtech, Cindy M ACCOUNTING FOR	
	HOUSEHOLD PRODUCTION: A PROTOTYPE SATELLITE ACCOUNT USING THE AMERICAN TIME USE SURVEY. Review of Income & Wealth. 2009. 55. doi: 10.1111/j.1475-	Date;
43	4991.2009.00319.x.	Comparator
	Ly, D. P., Jena, A. B Sex Differences in Time Spent on Household Activities and Care of	Comparator
	Children Among US Physicians, 2003-2016. Mayo Clin Proc. 2018. 93. doi:	Exposure;
44	10.1016/j.mayocp.2018.02.018.	Comparator
	Martell, Michael E., Roncolato, Leanne. Share of Household Earnings and Time Use of	
4-	Women in Same-Sex and Different-Sex Households. Eastern Economic Journal. 2020. 46.	.
45	doi: 10.1057/s41302-019-00145-4.	Outcome; Date
	McGuirt, J. T., Wu, Q., Laska, M. N., Truesdale, K. P., Rafferty, A. P., Bell, R. A., Ammerman, A. S., Jilcott Pitts, S. B Associations between shopping patterns, dietary behaviours and	
	geographic information system-assessed store accessibility among small food store	Exposure;
46	customers. Public Health Nutr. 2020 doi: 10.1017/s1368980020005017.	Comparator
-	Milkie, Melissa A., Raley, Sara B., Bianchi, Suzanne M Taking on the Second Shift: Time	
	Allocations and Time Pressures of U.S. Parents with Preschoolers. Social Forces. 2009. 88.	
47	doi: 10.1353/sof.0.0268.	Date; Outcome
	Mills, Susanna, Brown, Heather, Wrieden, Wendy, White, Martin, Adams, Jean. Frequency of	
	eating home cooked meals and potential benefits for diet and health: cross-sectional analysis	Country
48	of a population-based cohort study. International Journal of Behavioral Nutrition and Physical Activity. 2017. 14. doi: 10.1186/s12966-017-0567-y.	Country; Outcome
40	Nepper, M. J., Chai, W Parents' barriers and strategies to promote healthy eating among	JUIGOTTE
49	school-age children. Appetite. 2016. 103. doi: 10.1016/j.appet.2016.04.012.	Outcome
	Neumark-Sztainer, D., MacLehose, R., Loth, K., Fulkerson, J. A., Eisenberg, M. E., Berge, J	
	What's for dinner? Types of food served at family dinner differ across parent and family	Comparator;
50	characteristics. Public Health Nutrition. 2014. 17. doi: 10.1017/s1368980012004594.	Outcome
	Neumark-Sztainer, D., Wall, M., Fulkerson, J. A., Larson, N Changes in the frequency of family	
EA	meals from 1999 to 2010 in the homes of adolescents: trends by sociodemographic	Outcomo
51	characteristics. J Adolesc Health. 2013. 52. doi: 10.1016/j.jadohealth.2012.06.004. Oleschuk, Merin. Expanding the joys of cooking: How class shapes the emotional experience	Outcome
52	of family foodwork. Gender, Work & Organization. 2020 doi: 10.1111/gwao.12599.	Country
- 02	Pailhé, Ariane, Solaz, Anne, Stanfors, Maria. The Great Convergence: Gender and Unpaid	Journay
	Work in Europe and the United States. Population & Development Review. 2021. 47. doi:	
53	10.1111/padr.12385.	Date

	Bibliography	Rationale for exclusion
	Pelletier, J. E., Laska, M. N Balancing healthy meals and busy lives: associations between	
54	work, school, and family responsibilities and perceived time constraints among young adults. J Nutr Educ Behav. 2012. 44. doi: 10.1016/j.jneb.2012.04.001.	Outcome
	Pepin, Joanna R., Sayer, Liana C., Casper, Lynne M Marital Status and Mothers' Time Use:	
	Childcare, Housework, Leisure, and Sleep. Demography (Springer Nature). 2018. 55. doi:	Exposure;
_55	10.1007/s13524-018-0647-x.	Outcome
56	Quick, B. L., Fiese, B. H., Anderson, B., Koester, B. D., Marlin, D. W. A formative evaluation of shared family mealtime for parents of toddlers and young children. Health Commun. 2011. 26. doi: 10.1080/10410236.2011.561920.	Comparator; Outcome
57	Rogus, S Examining the influence of perceived and objective time constraints on the quality of household food purchases. Appetite. 2018. 130. doi: 10.1016/j.appet.2018.08.025.	Outcome
58	Schneider, Daniel, Hastings, Orestes P Income Inequality and Household Labor. Social Forces. 2017. 96. doi: 10.1093/sf/sox061.	Outcome; Date
59	Sen, Shuvro, Antara, Neel, Sen, Shusmita. Factors influencing consumers' to Take Readymade Frozen Food. Current Psychology. 2019 doi: 10.1007/s12144-019-00201-4.	Country
60	Smith, L. P.,Ng, S. W.,Popkin, B. M Trends in US home food preparation and consumption: analysis of national nutrition surveys and time use studies from 1965-1966 to 2007-2008. Nutr J. 2013. 12. doi: 10.1186/1475-2891-12-45.	Date; Comparator
61	Sonneville, K. R.,La Pelle, N.,Taveras, E. M.,Gillman, M. W.,Prosser, L. A Economic and other barriers to adopting recommendations to prevent childhood obesity: results of a focus group study with parents. BMC Pediatr. 2009. 9. doi: 10.1186/1471-2431-9-81.	Date; Outcome
62	Starmer, A. J., Frintner, M. P., Matos, K., Somberg, C., Freed, G., Byrne, B. J Gender Discrepancies Related to Pediatrician Work-Life Balance and Household Responsibilities. Pediatrics. 2019. 144. doi: 10.1542/peds.2018-2926.	Exposure; Outcome
63	Taillie, L. S Who's cooking? Trends in US home food preparation by gender, education, and race/ethnicity from 2003 to 2016. Nutr J. 2018. 17. doi: 10.1186/s12937-018-0347-9.	Comparator; Outcome
0.4	Tao, Hung-Lin. Informational Ambiguity and Survey Bias: Husbands' and Wives' Reports on Their Contribution to Their Families. Social Indicators Research. 2013. 111. doi:	Occupation
64	10.1007/s11205-012-0029-5.	Country
65	Tashiro, S.,Lo, C. P Gender Difference in the Allocation of Time PREPARING FOOD COOKED AT HOME VERSUS PURCHASING PREPARED FOOD. Food Culture & Society. 2012. 15. doi: 10.2752/175174412x13276629246000.	Date
	Tashiro, Sanae. Differences in Food Preparation by Race and Ethnicity: Evidence from the American Time Use Survey. Review of Black Political Economy. 2009. 36. doi:	
66	10.1007/s12114-009-9045-3.	Date
67	Taveras, E. M., McDonald, J., O'Brien, A., Haines, J., Sherry, B., Bottino, C. J., Troncoso, K., Schmidt, M. E., Koziol, R Healthy Habits, Happy Homes: methods and baseline data of a randomized controlled trial to improve household routines for obesity prevention. Prev Med. 2012. 55. doi: 10.1016/j.ypmed.2012.08.016.	Exposure; Outcome
60	Tiedje, K., Wieland, M. L., Meiers, S. J., Mohamed, A. A., Formea, C. M., Ridgeway, J. L., Asiedu, G. B., Boyum, G., Weis, J. A., Nigon, J. A., Patten, C. A., Sia, I. G A focus group study of healthy eating knowledge, practices, and barriers among adult and adolescent immigrants and refugees in the United States. Int J Behav Nutr Phys Act. 2014. 11. doi: 10.1186/1479-5868-	Comparator;
68	11-63. Tiwari, A.,Aggarwal, A.,Tang, W.,Drewnowski, A Cooking at Home: A Strategy to Comply	Outcome
69	With US Dietary Guidelines at No Extra Cost. American Journal of Preventive Medicine. 2017. 52. doi: 10.1016/j.amepre.2017.01.017.	Outcome
	Trofholz, A. C., Tate, A., Keithahn, H., de Brito, J. N., Loth, K., Fertig, A., Berge, J. M Family meal characteristics in racially/ethnically diverse and immigrant/refugee households by household food security status: A mixed methods study. Appetite. 2021. 157. doi:	-
70	10.1016/j.appet.2020.105000.	Outcome
71	Tuttle, Charlotte. Changes in Food-At-Home Spending by SNAP Participants After the Stimulus Act of 2009 2016 doi: 10.22004/ag.econ.252645.	Outcome

	Bibliography	Rationale for exclusion
	Virudachalam, S., Chung, P. J., Faerber, J. A., Pian, T. M., Thomas, K., Feudtner, C Quantifying	
	parental preferences for interventions designed to improve home food preparation and home	
	food environments during early childhood. Appetite. 2016. 98. doi:	
72	10.1016/j.appet.2015.11.007.	Outcome
	Virudachalam, S.,Long, J. A.,Harhay, M. O.,Polsky, D. E.,Feudtner, C. Prevalence and	
	patterns of cooking dinner at home in the USA: National Health and Nutrition Examination	
	Survey (NHANES) 2007-2008. Public Health Nutrition. 2014. 17. doi:	
73	10.1017/s1368980013002589.	Date; Outcome
	Wolfson, J. A., Bleich, S. N., Smith, K. C., Frattaroli, S What does cooking mean to you?:	
	Perceptions of cooking and factors related to cooking behavior. Appetite. 2016. 97. doi:	
74	10.1016/j.appet.2015.11.030.	Outcome
	Wolfson, J. A., Leung, C. W., Richardson, C. R More frequent cooking at home is associated	
	with higher Healthy Eating Index-2015 score. Public Health Nutrition. 2020. 23. doi:	
75	10.1017/s1368980019003549.	Outcome
	Wulff Pabilonia, Sabrina, Younghwan, Song. Single Mothers' Time Preference, Smoking, and	
	Enriching Childcare: Evidence from Time Diaries. Eastern Economic Journal. 2013. 39. doi:	
76	10.1057/eej.2013.7.	Date
	Yenerall, J., You, W., Hill, J Beyond the supermarket: analyzing household shopping trip	
	patterns that include food at home and away from home retailers. BMC Public Health. 2020.	Exposure;
77	20. doi: 10.1186/s12889-020-09882-0.	Outcome
	You, W, Davis, G,C,. Household food expenditures, parental time allocation, and childhood	
	overweight: An integrated two-stage collective model with an empirical application and test.	
78	American Journal of Agricultural Economics. 2010. 92. doi: 10.1093/ajae/aap031.	Date
	Zeballos, Eliana, Restrepo, Brandon. Working From Home Leads to More Time Spent	
79	Preparing Food, Eating at Home 2021. 2020. doi: 10.22004/ag.econ.309609.	Exposure

Appendix 5-a: Literature search strategy for the evidence scan on factors that influence the purchase and/or consumption of convenience foods

Database: PubMed

Vendor: National Library of Medicine

Date of Search: 5/20/2021

Limits Used: Filters: Language English Publication Dates 2008 - 2021

Total = 3,201

Search #	Concept	Search String	N
#1	Convenience Foods	((("ready to eat"[tiab] OR "ready to heat"[tiab] OR "ready to cook"[tiab] OR "ready to bake"[tiab] OR "pre prepared"[tiab] OR preprepared[tiab] OR "pre made"[tiab] OR premade[tiab] OR precooked"[tiab] OR precooked[tiab] OR "pre cut"[tiab] OR precooked[tiab] OR "pre cut"[tiab] OR precooked[tiab] OR boxed[tiab] OR frozen[tiab] OR canned[tiab] OR dehydrated[tiab] OR tinned[tiab] OR bagged[tiab] OR jarred[tiab] OR "ready made"[tiab] OR instant[tiab] OR prepackaged[tiab] OR "prepackaged"[tiab] OR "single serve"[tiab] OR "single serve"[tiab] OR "single serve"[tiab] OR prewashed[tiab] OR "partially prepared"[tiab] OR packaged[tiab] OR "easy to prepare"[tiab] OR packaged[tiab] OR "easy to prepare"[tiab]) AND (food[MeSH] OR food*[tiab] OR goods[tiab] OR meal*[tiab] OR snack*[tiab] OR fruit*[tiab] OR vegetable*[tiab])) OR ("convenient food*"[tiab] OR "convenience food*"[tiab] OR "convenience meal*"[tiab] OR "ready meal"[tiab]	16,186
#2		OR "food at home"[tiab] OR "fresh cut produce"[tiab])) #1 NOT (letter[ptyp] OR editorial[ptyp] OR comment[ptyp] OR news[ptyp] OR "Congress"[Publication Type] OR "Consensus Development Conference"[Publication Type] OR editorial[tiab] OR commentary[tiab] OR "conference abstract*"[tiab] OR "systematic review*"[ti] OR "meta- analysis"[ptyp] OR "meta-analysis"[ti] OR "meta- analyses"[ti] OR "Review"[Publication Type] OR "Systematic Review"[Publication Type] OR "conference proceeding*"[tiab] OR "retracted publication"[ptyp] OR "retraction of publication"[ptyp] OR "retraction of publication"[tiab] OR "retraction notice"[ti] OR "retracted publication"[tiab] OR "Published Erratum"[Publication Type] OR corrigenda[tiab] OR corrigendum[tiab] OR errata[tiab] OR erratum[tiab] OR protocol[ti] OR protocols[ti] OR "case report"[ti] OR "case series"[ti] OR "Case Reports" [Publication Type])	3,201

	NOT	
	("Developing Countries"[Mesh] OR "developing countr*" OR "Under Developed Nation*" OR "low income countr*" OR "middle income countr*"OR "low-middle-income countr*" OR LMIC[tiab] OR "Europe"[Mesh] OR "Australia"[Mesh] OR "Asia"[Mesh] OR "Africa"[Mesh] OR "Mexico"[Mesh] OR "Islands"[Mesh] OR "Central America"[Mesh] OR "Latin America"[Mesh] OR "South America"[Mesh])	
)	
	NOT	
	("Animals"[Mesh] NOT	
	("Animals"[Mesh] AND "Humans"[Mesh])	
) Filters: English, from 2008 - 2021	

Database: Business Source Premiere

Vendor: EBSCO

Date of Search: 5/20/2021

Limits Used: Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language:

English Total = 6,181

Search #	Concept	Search String	N
#1	Convenience Foods	((("ready to eat" OR "ready to heat" OR "ready to cook" OR "ready to bake" OR "pre prepared" OR preprepared OR "pre made" OR premade OR "pre cooked" OR precooked OR "pre cut" OR precut OR "fresh cut" OR boxed OR frozen OR canned OR dehydrated OR tinned OR bagged OR jarred OR "ready made" OR instant OR prepackaged OR "prepackaged" OR "shelf stable" OR "single serve" OR "single serving" OR "pre washed" OR prewashed OR "partially prepared" OR packaged OR "easy to prepare")	107,790
		AND (food* OR goods OR meal* OR snack* OR fruit* OR vegetable*)) OR ("convenient food*" OR "convenience food*" OR	
		"convenience meal*" OR "ready meal*" OR "food at home" OR "fresh cut produce"))	
#2		Limiters - Scholarly (Peer Reviewed) Journals; Published Date: 20080101-20211231; Document Type: Article; Language: English	6,181

Database: Scopus Vendor: Elsevier

Date of Search: 5/19/2021

Limits Used: Year, Document Type, Source Type, Country/Territory:, Language: English

Total = 4,114

Search #	Concept	Search String	N
#1	Convenience Foods	TITLE-ABS-KEY ("convenience food" OR "convenient food" OR "ready meal" OR "convenience meal" OR "food at home" OR "fresh cut produce")	40,946
		OR (TITLE-ABS-KEY ("ready to eat" OR "ready to heat" OR "ready to cook" OR "ready to bake" OR "pre prepared" OR preprepared OR "pre made" OR premade OR "pre cooked" OR precooked OR "pre cut" OR precut OR "fresh cut" OR boxed OR frozen OR canned OR dehydrated OR tinned OR bagged OR jarred OR "ready made" OR instant OR "pre packaged" OR prepackaged OR "shelf stable" OR "single serve" OR "single serving" OR "pre washed" OR prewashed OR "partially prepared" OR packaged OR "easy to prepare")	
		AND TITLE-ABS-KEY (food OR goods OR meal OR snack OR fruit OR vegetable))	
#2	Limiters	(LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010) OR LIMIT-TO (PUBYEAR, 2009) OR LIMIT-TO (PUBYEAR, 2008))	4,114
		AND (LIMIT-TO (DOCTYPE, "ar")	
		AND (LIMIT-TO (AFFILCOUNTRY, "United States") OR LIMIT-TO (AFFILCOUNTRY, "Undefined")	
		AND (LIMIT-TO (SRCTYPE, "j") OR LIMIT-TO (SRCTYPE, "Undefined")	
		AND (LIMIT-TO (LANGUAGE, "English")	

Grey Literature Search

Google Scholar

Convenience "ready meal" OR "food at home" OR "fresh cut produce" OR "ready to eat" OR "ready to heat" OR "ready to cook" OR "ready to bake" OR "pre made" OR premade OR "pre cooked" OR "pre cut" OR precut OR "fresh cut" OR boxed OR frozen OR canned OR dehydrated OR tinned OR bagged OR jarred OR "ready made" OR instant OR "pre packaged" OR prepackaged OR "shelf stable" OR "single serve" OR "single serving" OR "pre washed" OR prewashed OR "partially prepared" OR packaged OR "easy to prepare"

Limits: Publication Date: 2008-2021; Date Searched: 5/26/2021 Results: 110, limited to 11 pages

Google

site::gov AND Convenience AND "ready meal" OR "food at home" OR "fresh cut produce" OR "ready to eat" OR "ready to heat" OR "ready to cook" OR "ready to bake" OR "pre made" OR premade OR "pre cooked" OR "pre cut" OR precut OR "fresh cut" OR boxed OR frozen OR canned OR dehydrated OR tinned OR bagged OR jarred OR "ready made" OR instant OR "pre packaged" OR prepackaged OR "shelf stable" OR "single serve" OR "single serving" OR "pre washed" OR prewashed OR "partially prepared" OR packaged OR "easy to prepare"

Limits:

Date Searched: 5/27/2021

Results: 30, limited to 3 pages

Ag Econ

Any of the words: "ready to eat" "ready to heat" "ready to cook" "ready to bake" "pre prepared" prepared "pre made" premade "pre cooked" precooked "pre cut" precut "fresh cut" boxed frozen canned dehydrated tinned bagged jarred "ready made" instant "pre packaged" prepackaged "shelf stable" "single serve" "single serving" "pre washed" prewashed "partially prepared" packaged "easy to prepare"

AND

Any of the words: food goods meal snack fruit vegetable

OR

Any of the words: "convenience food" "convenient food" "ready meal" "convenience meal" "food at home" "fresh cut produce"

Limits: Added since 2008 Date Searched: 5/26/2021 Results: 120, limited to 12 pages

Appendix 5-b: Excluded articles for the evidence scan on factors that influence the purchase and/or consumption of convenience foods

The following table lists the articles excluded after full-text screening for this evidence scan question. At least 1 reason for exclusion is provided for each article, though this may not reflect all possible reasons. Information about articles excluded after title and abstract screening is available upon request.

	Citation	Reason for exclusion
1.	. Are canned fruits and vegetables a healthy alternative to fresh produce? The Johns Hopkins medical letter health after 50. 2013. 25:7.	Outcome
2.	. Convenience food and drink sector. Nutrition & Food Science. 2010. 40:173-178. doi:10.1108/nfs.2010.01740dab.022.	Country
3.	. FASTLANE CONVENIENCE. 2021.	Outcome
4.	. Fresh or frozen produce? The health benefit is all in the mix. Relying on a mix of fresh and frozen can help you get your five-to-nine daily servings of fruits and vegetables. Harvard men's health watch. 2014. 18:6.	Outcome
5.	. From Other Blogs: National Immunization Awareness Month, convenience foods, disaster recovery & more. Live Healthy SC. 2018.	Study design
6.	. International chefs' circle promotes quality ready meals. Food Australia. 2008. 60:94.	Country; Publication status
7.	. ready-to-eat food samples: Topics by Science.gov. 2021.	Other
8.	Ailawadi, K, Ma, Y, Grewal, D. The club store effect: Impact of shopping in warehouse club stores on consumers' packaged food purchases. Journal of Marketing Research. 2018. 55:193-207. doi:10.1509/jmr.16.0235.	Outcome
9.	Albuquerque, P, Bronnenberg, BJ. Estimating demand heterogeneity using aggregated data: An application to the frozen pizza category. Marketing Science. 2009. 28:356-372. doi:10.1287/mksc.1080.0403.	Intervention/Exposure; Data date range
10.	Alpaugh, M, Pope, L, Trubek, A, Skelly, J, Harvey, J. Cooking as a health behavior: Examining the role of cooking classes in a weight loss intervention. Nutrients. 2020. 12:1-13. doi:10.3390/nu12123669.	Outcome
11.	Andrews, SandraL, O'Reilly, Donna. Storing Designer And Convenience Foods. Extension Bulletin E-2297 Cooperative Extension Service. 1991. 6.	Outcome
12.	Anesbury, Zachary William, Talbot, Danielle, Day, Chanel Andrea, Bogomolov, Tim, Bogomolova, Svetlana. The fallacy of the heavy buyer: Exploring purchasing frequencies of fresh fruit and vegetable categories. Journal of Retailing & Consumer Services. 2020. 53:N.PAG-N.PAG. doi:10.1016/j.jretconser.2019.101976.	Intervention/Exposure
13.	Anselmsson, Johan, Bondesson, Niklas Vestman, Johansson, Ulf. Brand image and customers' willingness to pay a price premium for food brands. Journal of Product & Brand Management. 2014. 23:90-102. doi:10.1108/JPBM-10-2013-0414.	Country
14.	Arentz, L. Kidney-Friendly Frozen Meals Update: Quick and Convenient Options for Chronic Kidney Disease Patients. Journal of Renal Nutrition. 2016. 26:e15-e17. doi:10.1053/j.jrn.2016.02.004.	Outcome
15.	Aviles, M Victoria, Naef, Elisa Fernanda, Abalos, Rosa Ana, Lound, Liliana H, Olivera, Daniela F, García-Segovia, Purificación. Effect of familiarity of ready-to-eat animal-based meals on consumers' perception and consumption motivation. International Journal of Gastronomy and Food Science. 2020. 21:100225.	Country
16.	Ayala, GX, Baquero, B, Laraia, BA, Ji, M, Linnan, L. Efficacy of a store-based environmental change intervention compared with a delayed treatment control condition on store customers' intake of fruits and vegetables. Public Health Nutrition. 2013. 16:1953-1960. doi:10.1017/S1368980013000955.	Outcome

	Citation	Reason for exclusion
17.	Baker, SL, McCabe, SD, Swithers, SE, Payne, CR, Kranz, S. Do healthy, child-friendly fruit and vegetable snacks appeal to consumers? A field study exploring adults' perceptions and purchase intentions. Food Quality and Preference. 2015. 39:202-208. doi:10.1016/j.foodqual.2014.07.013.	Outcome
18.	Balzan, S, Fasolato, L, Cardazzo, B, Berti, G, Novelli, E. Cold Chain and Consumers' Practices: Exploratory Results of Focus Group Interviews. Ital J Food Saf. 2014. 3:4516. doi:10.4081/ijfs.2014.4516.	Country
19.	Barska, Anetta. Millennial consumers in the convenience food market. Konsumenci generacji Y na rynku żywności wygodnej 2018. 22:251-264. doi:10.2478/manment-2018-0018.	Country
20.	Baumhofer, NK, Panapasa, SV, Francis Cook, E, Roberto, CA, Williams, DR. Sociodemographic factors influencing island foods consumption in the Pacific Islander Health Study. Ethnicity and Health. 2020. 25:305-321. doi:10.1080/13557858.2017.1418300.	Outcome
21.	Berge, JM, Tate, A, Trofholz, A, Loth, K, Miner, M, Crow, S, Neumark-Sztainer, D. Examining variability in parent feeding practices within a low-income, racially/ethnically diverse, and immigrant population using ecological momentary assessment. Appetite. 2018. 127:110-118. doi:10.1016/j.appet.2018.04.006.	Outcome
22.	Binkley, JK, Liu, Y. Food at Home and away from Home: Commodity Composition, Nutrition Differences, and Differences in Consumers. Agricultural and Resource Economics Review. 2019. 48:221-252. doi:10.1017/age.2019.1.	Intervention/Exposure
23.	Bird Jernigan, Valarie Blue, Salvatore, AliciaL, Williams, Mary, Wetherill, Marianna, Taniguchi, Tori, Jacob, Tvli, Cannady, Tamela, Grammar, Mandy, Standridge, Joy, Fox, Jill, Tingle Owens, JoAnna, Spiegel, Jennifer, Love, Charlotte, Teague, Travis, Noonan, Carolyn. A Healthy Retail Intervention in Native American Convenience Stores: The THRIVE Community-Based Participatory Research Study. American Journal of Public Health. 2019. 109:132-139. doi:10.2105/AJPH.2018.304749.	Outcome
24.	Bishop, L, Goeddeke-Merickel, CM. Kidney-Friendly Frozen Meal Tips and Suggestions "In A Pinch". Journal of Renal Nutrition. 2012. 22:e43-e45. doi:10.1053/j.jrn.2012.06.002.	Outcome; Study design
25.	Bodor, JN, Hutchinson, PL, Rose, D. Car ownership and the association between fruit and vegetable availability and diet. Preventive Medicine. 2013. 57:903-905. doi:10.1016/j.ypmed.2013.10.003.	Outcome
26.	Bosworth, RC, Bailey, D, Curtis, KR. Consumer Willingness to Pay for Local Designations: Brand Effects and Heterogeneity at the Retail Level. Journal of Food Products Marketing. 2015. 21:274-292. doi:10.1080/10454446.2013.843488.	Outcome
27.	Bower, Patrick. Forecasting New Products in Consumer Goods. Journal of Business Forecasting. 2012. 31:4-30.	Outcome
28.	Brauchla, M, Fulgoni, VL. Cost-effective Options for Increasing Consumption of Underconsumed Food Groups & Nutrients in the United States. Public Health Nutrition. 2021. doi:10.1017/S1368980021000537.	Outcome
29.	Briefel, RR, Chojnacki, GJ, Gabor, V, Forrestal, SG, Kleinman, R, Cabili, C, Gleason, PM. A Cluster Randomized Controlled Trial of a Home-Delivered Food Box on Food Security in Chickasaw Nation. Journal of the Academy of Nutrition and Dietetics. 2021. 121:S46-S58. doi:10.1016/j.jand.2020.07.021.	Outcome
30.	Briefel, RR, Collins, AM, Wolf, A, Gordon, AR, Cabili, CL, Klerman, JA. Nutrition impacts in a randomized trial of summer food benefits to prevent childhood hunger in U.S. schoolchildren. Journal of Hunger and Environmental Nutrition. 2018. 13:304-321. doi:10.1080/19320248.2017.1393366.	Outcome
31.	Briefel, RR, Wilson, A, Gleason, PM. Consumption of Low-Nutrient, Energy-Dense Foods and Beverages at School, Home, and Other Locations among School Lunch Participants and Nonparticipants. Journal of the American Dietetic Association. 2009. 109:S79-S90. doi:10.1016/j.jada.2008.10.064.	Data date range
32.	Burani, J. Home cooking. Eat healthy, save money!. Diabetes self-management. 2010. 27:	Publication status
33.	Camire, ME, Savoie, K, Perry, J, Calder, B. Preliminary assessment of maine consumers' educational preferences for fermenting foods at home. Food Protection Trends. 2019. 39:116-126.	Outcome

	Citation	Reason for exclusion
34.	Canuto, R, Garcez, A, Spritzer, PM, Olinto, MTA. Associations of perceived stress and	Country
	salivary cortisol with the snack and fast-food dietary pattern in women shift workers. Stress. 2021. 1-9. doi:10.1080/10253890.2021.1919615.	
35.	Caspi, CE, Lenk, K, Pelletier, JE, Barnes, TL, Harnack, L, Erickson, DJ, Laska, MN. Association between store food environment and customer purchases in small grocery stores, gas-marts, pharmacies and dollar stores. International Journal of Behavioral Nutrition and Physical Activity. 2017. 14:doi:10.1186/s12966-017-0531-x.	Outcome
36.	Chae, Mi-Jin, Bae, Hyun-Joo. A survey on preference and satisfaction of the customers	Country; Data date
	purchasing ready-to-eat foods. Korean Journal of Food and Cookery Science. 2008. 24:788-800.	range
37.	Chen, Danhong, Jaenicke, EdwardC. Composition of Food-at-Home Expenditures and Childhood Obesity. 2017. doi:10.22004/ag.econ.258343.	Publication status
38.	Chen, Y, Lin, BH, Mancino, L, Ploeg, MV, Zhen, C. Nutritional quality of retail food purchases is not associated with participation in the Supplemental Nutrition Assistance Program for nutrition-oriented households. PLoS ONE. 2020. 15:doi:10.1371/journal.pone.0240263.	Outcome
39.	Chonpracha, P, Ardoin, R, Gao, Y, Waimaleongoraek, P, Tuuri, G, Prinyawiwatkul, W.	Outcome
	Effects of intrinsic and extrinsic visual cues on consumer emotion and purchase intent: A case of ready-to-eat salad. Foods. 2020. 9:doi:10.3390/foods9040396.	
40.	Chu, J, Chintagunta, P, Cebollada, J. A comparison of within-household price sensitivity across online and offline channels. Marketing Science. 2008. 27:283-299.	Country
	doi:10.1287/mksc.1070.0288.	
41.	Cioffi, CE, Levitsky, DA, Pacanowski, CR, Bertz, F. A nudge in a healthy direction. The	Outcome; Other
	effect of nutrition labels on food purchasing behaviors in university dining facilities. Appetite.	
	2015. 92:7-14. doi:10.1016/j.appet.2015.04.053.	
42.	Cleary, R, Bonanno, A, Ghazaryan, A, Bellows, L, McCloskey, M. School meals and quality of household food acquisitions. Applied Economic Perspectives and Policy. 2021. doi:10.1002/aepp.13130.	Outcome
43.	Coffman, MA, Camire, ME. Perceived Barriers to Increased Whole Grain Consumption by	Outcome
	Older Adults in Long-Term Care. Journal of Nutrition in Gerontology and Geriatrics. 2017.	
	36:178-188. doi:10.1080/21551197.2017.1385564.	
44.	Colasanti, KJA, Matts, C, Hamm, MW. Results from the 2009 Michigan Farm to School Survey: Participation Grows from 2004. Journal of Nutrition Education and Behavior. 2012. 44:343-349. doi:10.1016/j.jneb.2011.12.003.	Outcome
45.	Combs, Susan. Local Sales Tax and Use Bulletin: Ready-To-Eat Food . 2007.	Data date range
46.	Conrad, Z, Chui, K, Jahns, L, Peters, CJ, Griffin, TS. Characterizing trends in fruit and vegetable intake in the USA by self-report and by supply-And-disappearance data: 2001-2014. Public Health Nutrition. 2017. 20:3045-3050. doi:10.1017/S1368980017002385.	Intervention/Exposure
47.	Contini, Caterina, Romano, Caterina, Scozzafava, Gabriele, Casini, Leonardo. Food habits and the increase in ready-to-eat and easy-to-prepare products. Food hygiene and toxicology in ready-to-eat foods. 2016. 3-14.	Study design
48.	Cook, R. Fresh-cut/value-added produce marketing trends. UC Davis freshcut products workshop: maintaining quality and safety. 2016.	Study design
49.	Cornwell, TB, Setten, E, Paik, SHW, Pappu, R. Parents, Products, and the Development of	Outcome
	Preferences: Child Palate and Food Choice in an Obesogenic Environment. Journal of Public Policy and Marketing. 2020. doi:10.1177/0743915620939581.	
50.	Dallinger, I, Magnini, VP. Chefs' perceptions of using convenience food products versus scratch cooking. Journal of Foodservice Business Research. 2017. 20:34-49. doi:10.1080/15378020.2016.1192892.	Outcome
51.	Dannefer, R, Bryan, E, Osborne, A, Sacks, R. Evaluation of the Farmers' Markets for Kids	Outcome
	programme. Public Health Nutrition. 2016. 19:3397-3405. doi:10.1017/S1368980016001725.	
52.	Davis, GC, You, W, Yang, Y. Are SNAP benefits adequate? A geographical and food expenditure decomposition. Food Policy. 2020. 95:doi:10.1016/j.foodpol.2020.101917.	Outcome

	Citation	Reason for exclusion
53.	Dettmann, RL, Dimitri, C. Who's buying organic vegetables? Demographic characteristics of U.S. consumers. Journal of Food Products Marketing. 2010. 16:79-91. doi:10.1080/10454440903415709.	Data date range
54.	DeWeese, RS, Ohri-Vachaspati, P. Cost of Children's Healthy vs. Unhealthy Snacks Does Not Differ at Convenience Stores. Journal of Nutrition Education and Behavior. 2017. 49:241-243.e1. doi:10.1016/j.jneb.2016.11.006.	Outcome
55.	Dhir, Bhavya, Singla, Neerja. Consumption Pattern and Health Implications of Convenience Foods: A Practical Review. Current Journal of Applied Science and Technology. 2019. 1-9.	Country
56.	Di Noia, J, Monica, D, Cullen, KW, Pérez-Escamilla, R, Gray, HL, Sikorskii, A. Differences in fruit and vegetable intake by race/ethnicity and by hispanic origin and nativity among women in the special supplemental nutrition program for women, infants, and children, 2015. Preventing Chronic Disease. 2016. 13:doi:10.5888/pcd13.160130.	Outcome
57.	Didinger, C, Thompson, H. Motivating pulse-centric eating patterns to benefit human and environmental well-being. Nutrients. 2020. 12:1-12. doi:10.3390/nu12113500.	Study design
58.	Disantis, KI, Grier, SA, Oakes, JM, Kumanyika, SK. Food prices and food shopping decisions of black women. Appetite. 2014. 77:104-112. doi:10.1016/j.appet.2014.02.016.	Outcome
59.	Dong, Diansheng, Kaiser, HarryM. Investigating household food interpurchase behavior through market segmentation. Agribusiness. 2010. 26:389-404. doi:10.1002/agr.20230.	Data date range
60.	Espinoza-Orias, Namy, Azapagic, Adisa. Understanding the impact on climate change of convenience food: Carbon footprint of sandwiches. Sustainable Production and Consumption. 2018. 15:1-15.	Outcome
61.	Findholt, NE, Izumi, BT, Nguyen, T, Pickus, H, Chen, Z. Availability of healthy snack foods and beverages in stores near high-income urban, low-income urban, and rural elementary and middle schools in Oregon. Childhood Obesity. 2014. 10:342-348. doi:10.1089/chi.2014.0020.	Outcome
62.	Gabrielli, Veronica, Cavazza, Nicoletta. The influence of in-store product holders on orientation towards the product and on purchase intention. International Review of Retail, Distribution & Consumer Research. 2014. 24:311-327. doi:10.1080/09593969.2013.862507.	Country
63.	Gajda, R, Bronkowska, M. Dietary patterns of health sciences students in regarding to physical activity levels and somatic indicators of nutritional status. Rocz Panstw Zakl Hig. 2020. 71:271-278. doi:10.32394/rpzh.2020.0124.	Country
64.	Ghosh Roy, P, Jones, KK, Martyn-Nemeth, P, Zenk, SN. Contextual correlates of energy-dense snack food and sweetened beverage intake across the day in African American women: An application of ecological momentary assessment. Appetite. 2019. 132:73-81. doi:10.1016/j.appet.2018.09.018.	Other
65.	Graham, DJ, Mohr, GS. When zero is greater than one: Consumer misinterpretations of nutrition labels. Health Psychology. 2014. 33:1579-1587. doi:10.1037/hea0000080.	Intervention/Exposure; Outcome
66.	Guan, X, Atlas, SA, Vadiveloo, M. Targeted retail coupons influence category-level food purchases over 2-years 11 Medical and Health Sciences 1117 Public Health and Health Services. International Journal of Behavioral Nutrition and Physical Activity. 2018. 15:doi:10.1186/s12966-018-0744-7.	Data date range
67.	Gumirakiza, JD, Curtis, KR, Bosworth, R. Who attends farmers' markets and why? Understanding consumers and their motivations. International Food and Agribusiness Management Review. 2014. 17:65-82.	Outcome
68.	Guthrie, J, Mancino, L, Lin, CTJ. Nudging consumers toward better food choices: Policy approaches to changing food consumption behaviors. Psychology and Marketing. 2015. 32:501-511. doi:10.1002/mar.20795.	Study design
69.	Guthrie, Joanne, Lin, Biing-Hwan. Both At Home and Away, Americans Are Choosing More Lower Fat Foods Than They Did 35 Years Ago. 2018. October 2018:doi:10.22004/ag.econ.302659.	Outcome
70.	Ha, EJ, Caine-Bish, N. Effect of Nutrition Intervention Using a General Nutrition Course for Promoting Fruit and Vegetable Consumption among College Students. Journal of Nutrition Education and Behavior. 2009. 41:103-109. doi:10.1016/j.jneb.2008.07.001.	Data date range
71.	Haire, C, Raynor, HA. Weight status moderates the relationship between package size and food Intake. Journal of the Academy of Nutrition and Dietetics. 2014. 114:1251-1256. doi:10.1016/j.jand.2013.12.022.	Outcome

	Citation	Reason for exclusion
72.	Henderson, Steven. September, 20171 Comparing Global questions and answers to results from detailed specific questions: Data on Food Expenditures from the Consumer Expenditure Survey, 1998 - 2016. 2017. 5.	Outcome
73.	Hillier, A, McLaughlin, J, Cannuscio, CC, Chilton, M, Krasny, S, Karpyn, A. The Impact of WIC Food Package Changes on Access to Healthful Food in 2 Low-Income Urban Neighborhoods. Journal of Nutrition Education and Behavior. 2012. 44:210-216. doi:10.1016/j.jneb.2011.08.004.	Outcome
74.	Hirekenchanagoudar, Renuka. Consumer behaviour towards ready-to-eat food products. 2008.	Country
75.	Holloman, EL, Newman, MC. A community-based assessment of seafood consumption along the lower James River, Virginia, USA: Potential sources of dietary mercury exposure. Environmental Research. 2010. 110:213-219. doi:10.1016/j.envres.2010.01.002.	Intervention/Exposure
76.	Holzmeister, LA. Supermarket smarts. Fresh, frozen, and canned poultry. Diabetes self-management. 2008. 25:73, 75, 77-78, 80-81, 84-85.	Publication status
77.	Holzmeister, LA. Vegetarian frozen entrées. Diabetes self-management. 2010. 27:52, 54, 56-60.	Publication status
78.	Hoseini Siahdashti, Seyed Jaber. Investigating the Role of Food Packaging in Terms of Design and Color in Consumer Purchasing Behavior. International Journal of Management, Accounting & Economics. 2019. 6:542-550.	Outcome
79.	Hosler, AS, Rajulu, DT, Fredrick, BL, Ronsani, AE. Assessing retail fruit and vegetable availability in urban and rural underserved communities. Preventing Chronic Disease. 2008. 5:	Data date range
80.	Huffman, WE. Household production and the demand for food and other inputs: U.S. Evidence. Journal of Agricultural and Resource Economics. 2011. 36:465-487.	Outcome
81.	Hull, MV, Jagim, AR, Oliver, JM, Greenwood, M, Busteed, DR, Jones, MT. Gender differences and access to a sports dietitian influence dietary habits of collegiate athletes. Journal of the International Society of Sports Nutrition. 2016. 13:doi:10.1186/s12970-016-0149-4.	Outcome
82.	Huyghe, Elke, Verstraeten, Julie, Geuens, Maggie, Van Kerckhove, Anneleen. Clicks as a Healthy Alternative to Bricks: How Online Grocery Shopping Reduces Vice Purchases. Journal of Marketing Research (JMR). 2017. 54:61-74. doi:10.1509/jmr.14.0490.	Country
83.	Idowu, Atinuke O, Omobuwajo, TO, Falade, KO. Production proximate analysis and shelf life studies of ready-to-eat rice and kilishi. African Journal of Food Science. 2010. 4:264-268.	Country
84.	Ilyuk, V, Block, L. The effects of single-serve packaging on consumption closure and judgments of product efficacy. Journal of Consumer Research. 2016. 42:858-878. doi:10.1093/jcr/ucv059.	Outcome
85.	Imtiyaz, H, Soni, P, Yukongdi, V. Investigating the Role of Psychological, Social, Religious and Ethical Determinants on Consumers' Purchase Intention and Consumption of Convenience Food. Foods. 2021. 10:doi:10.3390/foods10020237.	Country
86.	Ismail, MS, Ver Ploeg, M, Chomitz, VR, Wilde, P. Differences in Food-at-Home Spending for SNAP and Non-SNAP Households Given Geographic Price Variation. Journal of the Academy of Nutrition and Dietetics. 2020. 120:1142-1150.e12. doi:10.1016/j.jand.2019.12.017.	Outcome
87.	Jamal, Ahmad, Peattie, Sue, Peattie, Ken. Ethnic minority consumers' responses to sales promotions in the packaged food market. Journal of Retailing & Consumer Services. 2012. 19:98-108. doi:10.1016/j.jretconser.2011.10.001.	Country
88.	Jenny Sun, CH, Chiang, FS, Owens, M, Squires, D. Will American consumers pay more for eco-friendly labeled canned tuna? Estimating US consumer demand for canned tuna varieties using scanner data. Marine Policy. 2017. 79:62-69. doi:10.1016/j.marpol.2017.02.006.	Intervention/Exposure
89.	Jilcott, SB, Laraia, BA, Evenson, KR, Ammerman, AS. Perceptions of the community food environment and related influences on food choice among midlife women residing in rural and urban areas: A qualitative analysis. Women and Health. 2009. 49:164-180. doi:10.1080/03630240902915085.	Outcome; Data date range

	Citation	Reason for exclusion
90.	Jock, BW, Roche, KB, Caldas, SV, Redmond, L, Fleischhacker, S, Gittelsohn, J. Latent class analysis offers insight into the complex food environments of native american communities: Findings from the randomly selected OPREVENT2 trial baseline sample. International Journal of Environmental Research and Public Health. 2020. 17:doi:10.3390/ijerph17041237.	Intervention/Exposure
91.	Jones, SA, Walter, J, Soliah, L, Phifer, JT. Perceived motivators to home food preparation: Focus group findings. Journal of the Academy of Nutrition and Dietetics. 2014. 114:1552-1556. doi:10.1016/j.jand.2014.05.003.	Outcome
92.	KC Healthy Kids. The incidence of the inclusion of food at home preparation in the sales tax base 9.	Data date range
93.	Keller, KL, Kuilema, LG, Lee, N, Yoon, J, Mascaro, B, Combes, AL, Deutsch, B, Sorte, K, Halford, JCG. The impact of food branding on children's eating behavior and obesity. Physiology and Behavior. 2012. 106:379-386. doi:10.1016/j.physbeh.2012.03.011.	Outcome
94.	Kern, DM, Auchincloss, AH, Robinson, LF, Stehr, MF, Pham-Kanter, G. Healthy and Unhealthy Food Prices across Neighborhoods and Their Association with Neighborhood Socioeconomic Status and Proportion Black/Hispanic. Journal of Urban Health. 2017. 94:494-505. doi:10.1007/s11524-017-0168-8.	Outcome
95.	Kim, J, Rabbitt, MP, Tuttle, C. Changes in Low-Income Households' Spending and Time Use Patterns in Response to the 2013 Sunset of the ARRA-SNAP Benefit. Applied Economic Perspectives and Policy. 2020. 42:777-795. doi:10.1093/aepp/ppz007.	Outcome
96.	Kumar, Arvind. Shopping Orientations and Their Inter-Relatedness: A Study on the Poor for CPGs. Journal of Global Marketing. 2020. 33:289-304. doi:10.1080/08911762.2020.1733729.	Country
97.	Lacy, K, Huffman, WE. Consumer demand for potato products andwillingness-to-pay for low-acrylamide, sulfite-free fresh potatoes and dices: Evidence from lab auctions. Journal of Agricultural and Resource Economics. 2016. 41:116-137.	Outcome
98.	Laguna, L, Gómez, B, Garrido, MD, Fiszman, S, Tarrega, A, Linares, MB. Do Consumers Change Their Perception of Liking, Expected Satiety, and Healthiness of a Product If They Know It Is a Ready-to Eat Meal?. Foods. 2020. 9:doi:10.3390/foods9091257.	Outcome
99.	Lee, Jonq-Ying, Kilmer, RichardL. At-Home Convenience Food Consumption and BMI. 2010. 29. doi:10.22004/ag.econ.56428.	Data date range
	Lee, JY, Lin, BH. A Study of the Demand for Convenience Food. Journal of Food Products Marketing. 2013. 19:1-14. doi:10.1080/10454446.2013.739120.	Data date range
101.	Lee, SH, Hoffman, VA, Bleich, SN, Gittelsohn, J. Frequency of Visiting and Food Dollars Spent at Carryouts Among Low-Income, Urban African American Adults. Journal of Hunger and Environmental Nutrition. 2013. 7:459-467. doi:10.1080/19320248.2012.735220.	Outcome
102.	Lin, BH, Dong, D, Carlson, A, Rahko vs.ky, I. Potential dietary outcomes of changing relative prices of healthy and less healthy foods: The case of ready-to-eat breakfast cereals. Food Policy. 2017. 68:77-88. doi:10.1016/j.foodpol.2017.01.004.	Data date range
103.	Liu, Y, Balachander, S. How long has it been since the last deal? Consumer promotion timing expectations and promotional response. Quantitative Marketing and Economics. 2014. 12:85-126. doi:10.1007/s11129-013-9141-3.	Outcome
	Locher, JL, Ritchie, CS, Roth, DL, Sen, B, Vickers, KS, Vailas, LI. Food choice among homebound older adults: Motivations and perceived barriers. Journal of Nutrition, Health and Aging. 2009. 13:659-664. doi:10.1007/s12603-009-0194-7.	Outcome
105.	Lodolce, ME, Harris, JL, Schwartz, MB. Sugar as part of a balanced breakfast? What cereal advertisements teach children about healthy Eating. Journal of Health Communication. 2013. 18:1293-1309. doi:10.1080/10810730.2013.778366.	Outcome
106.	Loose, Simone Mueller, Peschel, Anne, Grebitus, Carola. Quantifying effects of convenience and product packaging on consumer preferences and market share of seafood products: The case of oysters. Food Quality and Preference. 2013. 28:492-504.	Country
107.	Lotade-Manje, Justus, Dunn, RichardA, Nayga, RodolfoM, Jr, Sharkey, JosephR. Determinants of Affordability of Healthy Food in the Rural Counties: case of the Brazos Valley Area. The relationship between neighborhood characteristics and the affordability of fresh fruits and vegetables. 2009. 26. doi:10.22004/ag.econ.49511.	Outcome

	Citation	Reason for exclusion
	Lucan, SeanC, Barg, FrancesK, Long, JudithA. Promoters and Barriers to Fruit, Vegetable, and Fast-Food Consumption Among Urban, Low-Income African AmericansA Qualitative Approach. American Journal of Public Health. 2010. 100:631-635. doi:10.2105/AJPH.2009.172692.	Outcome
109.	Marckhgott, Eva, Kamleitner, Bernadette. Matte matters: when matte packaging increases perceptions of food naturalness. Marketing Letters. 2019. 30:167-178. doi:10.1007/s11002-019-09488-6.	Outcome
110.	Martin-Belloso, Olga, Soliva Fortuny, Robert. Advances in fresh-cut fruits and vegetables processing. 2019.	Study design
111.	McDermott, AJ, Stephens, MB. Cost of eating: Whole foods versus convenience foods in a low-income model. Family Medicine. 2010. 42:280-284.	Outcome
112.	McGill, CR, Birkett, A, Fulgonii, VL, III. Healthy Eating Index-2010 and food groups consumed by US adults who meet or exceed fiber intake recommendations NHANES 2001-2010. Food and Nutrition Research. 2016. 60:doi:10.3402/fnr.v60.29977.	Outcome
113.	McLean-Meyinsse, PatriciaE, Taylor, SherviaS, Gager, JanetV. Self-Reported Consumption of Fast-Food Meals by University Students. Journal of Food Distribution Research. 2015. 46:23-29.	Outcome
114.	Melo, G, Zhen, C, Colson, G. Does point-of-sale nutrition information improve the nutritional quality of food choices?. Economics and Human Biology. 2019. 35:133-143. doi:10.1016/j.ehb.2019.07.001.	Intervention/Exposure
115.	Melo, Grace, Rabinowitz, AdamN. Food Choices of SNAP/WIC Participants at Convenience Stores and Larger Stores. 2018. doi:10.22004/ag.econ.273844.	Outcome
116.	Miller, SR, Knudson, WA. Nutrition and Cost Comparisons of Select Canned, Frozen, and Fresh Fruits and Vegetables. American Journal of Lifestyle Medicine. 2014. 8:430-437. doi:10.1177/1559827614522942.	Outcome
117.	Moore, LV, Pinard, CA, Yaroch, AL. Features in Grocery Stores that Motivate Shoppers to Buy Healthier Foods, ConsumerStyles 2014. Journal of Community Health. 2016. 41:812-817. doi:10.1007/s10900-016-0158-x.	Outcome
118.	Morrissey, TW, Jacknowitz, A, Vinopal, K. Local food prices and their associations with children's weight and food security. Pediatrics. 2014. 133:422-430. doi:10.1542/peds.2013-1963.	Data date range
119.	Muhamad, Ida Idayu, Karim, Norsuhada Abdul. Trends, convenience, and safety issues of ready meals. Minimally Processed Foods. 2015. 105-123.	Study design
120.	Mulik, K, Haynes-Maslow, L. The Affordability of MyPlate: An Analysis of SNAP Benefits and the Actual Cost of Eating According to the Dietary Guidelines. Journal of Nutrition Education and Behavior. 2017. 49:623-631.e1. doi:10.1016/j.jneb.2017.06.005.	Outcome
121.		Outcome
122.	Nakano, S, Washizu, A. Aiming for better use of convenience food: an analysis based on meal production functions at home. J Health Popul Nutr. 2020. 39:3. doi:10.1186/s41043-020-0211-3.	Country
123.	Närvänen, Elina, Saarijärvi, Hannu, Simanainen, Olli. Understanding consumers' online conversation practices in the context of convenience food. International Journal of Consumer Studies. 2013. 37:569-576. doi:10.1111/ijcs.12021.	Country
124.	Ng, SW, Poti, JM, Popkin, BM. Trends in racial/ethnic and income disparities in foods and beverages consumed and purchased from stores among US households with children, 2000-2013. American Journal of Clinical Nutrition. 2016. 104:750-759. doi:10.3945/ajcn.115.127944.	Outcome
125.	Nicola, Silvana, Fontana, Emanuela. Fresh-cut produce quality: implications for a systems approach. Postharvest handling. 2014. 217-273.	Study design; Publication status
126.	O'Dare Wilson, K. The effect of poverty-influenced, food-related consumer behaviors on obesity: An analysis of the NHANES flexible consumer behavioral module. Social Work in Health Care. 2017. 56:400-411. doi:10.1080/00981389.2017.1279704.	Intervention/Exposure

	Citation	Reason for exclusion
127.	Olsen, Nina Veflen, Sijtsema, Siet J, Hall, Gunnar. Predicting consumers' intention to consume ready-to-eat meals. The role of moral attitude. Appetite. 2010. 55:534-539.	Country
128.	Olsen, Nina Veflen. The convenience consumer's dilemma. British Food Journal. 2012.	Country
	Page, R, Montgomery, K, Ponder, A, Richard, A. Targeting children in the cereal aisle: Promotional techniques and content features on ready-to-eat cereal product packaging. American Journal of Health Education. 2008. 39:272-282. doi:10.1080/19325037.2008.10599050.	Data date range
130.	Park, Ji Young, Kim, Ji-Na, Hong, Wan-Soo, Shin, Weon-Sun. Survey on Present Use and Future Demand for the Convenience Food in the Elderly Group. Korean J Community Nutr. 2012. 17:81-90.	Publication language
	Payne, C, Niculescu, M. Can healthy checkout end-caps improve targeted fruit and vegetable purchases? Evidence from grocery and SNAP participant purchases. Food Policy. 2018. 79:318-323. doi:10.1016/j.foodpol.2018.03.002.	Outcome
	Payne, CR, Niculescu, M, Barney, CE. Consumer consumption intentions of smaller packaged snack variants. International Journal of Consumer Studies. 2014. 38:238-242. doi:10.1111/ijcs.12090.	Outcome
	Peltner, Jonas, Thiele, Silke. Convenience-based food purchase patterns: Identification and associations with dietary quality, sociodemographic factors and attitudes. Public health nutrition. 2018. 21:558-570.	Country
134.	Peterson, SL, Dodd, KM, Kim, K, Roth, SL. Food cost perceptions and food purchasing practices of uninsured, low-income, rural adults. Journal of Hunger and Environmental Nutrition. 2010. 5:41-55. doi:10.1080/19320240903578073.	Data date range
135.	Phan, MM, Stodolska, M. What Impacts Leisure Activity and Diet among Immigrants? Mexican Immigrants' Leisure Participation and Food Patterns in the Midwestern U.S. Leisure Sciences. 2019. doi:10.1080/01490400.2019.1656119.	Outcome
136.	Phil, Harris, Silva, Andrés, Von Hausen, Nicolas, Magaña-Lemus, David. Effect of food insecurity on food purchases at home. Journal of Public Affairs (14723891). 2019. 19:N.PAG-N.PAG. doi:10.1002/pa.1852.	Outcome; Country
137.	Phipps, EJ, Braitman, LE, Stites, SD, Singletary, SB, Wallace, SL, Hunt, L, Axelrod, S, Glanz, K, Uplinger, N. Impact of a rewards-based incentive program on promoting fruit and vegetable purchases. American Journal of Public Health. 2015. 105:166-172. doi:10.2105/AJPH.2013.301752.	Intervention/Exposure; Outcome
138.	Phipps, EJ, Wallace, SL, Stites, SD, Uplinger, N, Brook Singletary, S, Hunt, L, Axelrod, S, Glanz, K, Braitman, LE. Using rewards-based incentives to increase purchase of fruit and vegetables in lower-income households: Design and start-up of a randomized trial. Public Health Nutrition. 2013. 16:936-941. doi:10.1017/S1368980012004934.	Study design
	PLATTA, ANNA, PUKSZTA, TOMASZ. ELDERLY PEOPLE'S PERCEPTION OF NEW AND CONVENIENCE FOODS WITH HEALTH BENEFITS. 2019. 2019:doi:10.22004/ag.econ.293920.	Country
	Poti, Jennifer, Mendez, Michelle, Ng, Shu Wen, Popkin, Barry. Are Food Processing and Convenience Linked with the Nutritional Quality of Foods Purchased by US Households?. The FASEB Journal. 2015. 29:587.9. doi:https://doi.org/10.1096/fasebj.29.1_supplement.587.9.	Publication status
141.	Powell, LM, Han, E. The costs of food at home and away from home and consumption patterns among U.S. adolescents. Journal of Adolescent Health. 2011. 48:20-26. doi:10.1016/j.jadohealth.2010.06.006.	Data date range
	Rahko vs.ky, Ilya, Jo, Young , Carlson, Andrea . What Drives Consumers to Purchase Convenience Foods?. USDA Blog. 2021.	Country; Other
143.	Restrepo, BJ, Zeballos, E. The effect of working from home on major time allocations with a focus on food-related activities. Review of Economics of the Household. 2020. 18:1165-1187. doi:10.1007/s11150-020-09497-9.	Outcome
144.	Richards, R, Brown, LB, Williams, DP, Eggett, DL. Developing a Questionnaire to Evaluate College Students' Knowledge, Attitude, Behavior, Self-efficacy, and Environmental Factors Related to Canned Foods. Journal of Nutrition Education and Behavior. 2017. 49:117-124.e1. doi:10.1016/j.jneb.2016.10.004.	Outcome

	Citation	Reason for exclusion
145.	Rogus, S. Examining the influence of perceived and objective time constraints on the quality of household food purchases. Appetite. 2018. 130:268-273. doi:10.1016/j.appet.2018.08.025.	Outcome
146.	Rohatgi, KW, Tinius, RA, Cade, WT, Steele, EM, Cahill, AG, Parra, DC. Relationships between consumption of ultra-processed foods, gestational weight gain and neonatal outcomes in a sample of US pregnant women. PeerJ. 2017. 2017:doi:10.7717/peerj.4091.	Outcome
147.	Rudi, Jeta, Davis, GeorgeC, You, Wen. The Goods-Time Elasticity of Substitution in Home Food Production for Food Stamp/SNAP Participants. 2012. 2. doi:10.22004/ag.econ.124707.	Publication status
	Scharadin, B, Jaenicke, EC. Time spent on childcare and the household Healthy Eating Index. Review of Economics of the Household. 2020. 18:357-386. doi:10.1007/s11150-020-09482-2.	Outcome
	Schäufele, I, Janssen, M. How and Why Does the Attitude-Behavior Gap Differ Between Product Categories of Sustainable Food? Analysis of Organic Food Purchases Based on Household Panel Data. Front Psychol. 2021. 12:595636. doi:10.3389/fpsyg.2021.595636.	Country
	Sen, Shuvro, Antara, Neel, Sen, Shusmita. Factors influencing consumers' to Take Readymade Frozen Food. Current Psychology. 2019. 1-10. doi:10.1007/s12144-019-00201-4.	Country
	Senia, MC, Jensen, HH, Zhylye vs.kyy, O. Time in eating and food preparation among single adults. Review of Economics of the Household. 2017. 15:399-432. doi:10.1007/s11150-014-9258-5.	Outcome
	Shamim, K, Ahmad, S, Alam, MA. COVID-19 health safety practices: Influence on grocery shopping behavior. J Public Aff. 2021. e2624. doi:10.1002/pa.2624.	Country
153.	Sharkey, JR, Horel, S, Dean, WR. Neighborhood deprivation, vehicle ownership, and potential spatial access to a variety of fruits and vegetables in a large rural area in Texas. International Journal of Health Geographics. 2010. 9:doi:10.1186/1476-072X-9-26.	Data date range
	Sheely, M. Global adoption of convenience foods. American Journal of Agricultural Economics. 2008. 90:1356-1365. doi:10.1111/j.1467-8276.2008.01231.x.	Data date range
155.	Shen, W, Long, LM, Shih, CH, Ludy, MJ. A humanities-based explanation for the effects of emotional eating and perceived stress on food choice motives during the COVID-19 pandemic. Nutrients. 2020. 12:1-18. doi:10.3390/nu12092712.	Outcome
156.	Short, Gianna, Peterson, Hikaru. Does time spent preparing food affect consumers' food choices?. 2016. doi:10.22004/ag.econ.244990.	Data date range
	Smith, LP, Ng, SW, Popkin, BM. Trends in US home food preparation and consumption: Analysis of national nutrition surveys and time use studies from 1965-1966 to 2007-2008. Nutrition Journal. 2013. 12:doi:10.1186/1475-2891-12-45.	Outcome
	Song, HJ, Simon, JR, Patel, DU. Food Preferences of Older Adults in Senior Nutrition Programs. Journal of Nutrition in Gerontology and Geriatrics. 2014. 33:55-67. doi:10.1080/21551197.2013.875502.	Outcome; Other
	Speight, KC, Schiano, AN, Harwood, WS, Drake, MA. Consumer insights on prepackaged Cheddar cheese shreds using focus groups, conjoint analysis, and qualitative multivariate analysis. Journal of Dairy Science. 2019. 102:6971-6986. doi:10.3168/jds.2018-16209.	Intervention/Exposure; Outcome
	Stallings, TL, Gazmararian, JA, Goodman, M, Kleinbaum, D. Agreement between the perceived and actual fruit and vegetable nutrition environments among low-income Urban women. Journal of Health Care for the Poor and Underserved. 2015. 26:1304-1318. doi:10.1353/hpu.2015.0109.	Outcome
	Stanley, K. Frugal cooking. Using canned goods. Diabetes self-management. 2010. 27:17-20.	Publication status
162.	Sutin, A, Robinson, E, Daly, M, Terracciano, A. Weight discrimination and unhealthy eating-related behaviors. Appetite. 2016. 102:83-89. doi:10.1016/j.appet.2016.02.016.	Outcome
163.	Taber, DR, Chriqui, JF, Chaloupka, FJ. State laws governing school meals and disparities in fruit/vegetable intake. American Journal of Preventive Medicine. 2013. 44:365-372. doi:10.1016/j.amepre.2012.11.038.	Outcome
164.	Taillie, LS, Ng, SW, Popkin, BM. Global growth of "big box" stores and the potential impact on human health and nutrition. Nutrition Reviews. 2016. 74:83-97. doi:10.1093/nutrit/nuv062.	Outcome

	Citation	Reason for exclusion
	Tate, EB, Unger, JB, Chou, CP, Spruijt-Metz, D, Pentz, MA, Riggs, NR. Children's Executive Function and High-Calorie, Low-Nutrient Food Intake: Mediating Effects of Child-Perceived Adult Fast Food Intake. Health Education and Behavior. 2015. 42:163-170. doi:10.1177/1090198114547811.	Outcome
	Tripathi, Jyoti, Gupta, Sumit, Kumar, Vivekanand, Chatterjee, Suchandra, Variyar, Prasad S, Sharma, Arun. Processing Food for Convenience: Challenges and Potentials	Outcome
167.	Trudel, R, Murray, KB, Kim, S, Chen, S. The impact of traffic light color-coding on food health perceptions and choice. Journal of Experimental Psychology: Applied. 2015. 21:255-275. doi:10.1037/xap0000049.	Outcome
168.	Tu, Juan, Qiu, Feng, Yang, Meng. The value of healthy eating vs the value of convenience: Investigating the willingness to pay for living in food swamps. 2020. doi:10.22004/ag.econ.304260.	Publication status
169.	Untari, Asih, Safira, Anya. DETERMINANTS OF NON-MUSLIM CONSUMERS' PURCHASE BEHAVIOR TOWARD HALAL PACKAGED FOOD. ASEAN Marketing Journal. 2020. 12:60-68. doi:10.21002/amj.v12i1.12892.	Country
170.	Vadiveloo, MK, Parker, HW, Juul, F, Parekh, N. Sociodemographic differences in the dietary quality of food-at-home acquisitions and purchases among participants in the U.S. nationally representative food acquisition and purchase survey (foodaps). Nutrients. 2020. 12:1-18. doi:10.3390/nu12082354.	Outcome
	Variyam, JN. Do nutrition labels improve dietary outcomes?. Health Economics. 2008. 17:695-708. doi:10.1002/hec.1287.	Data date range
	Vickner, StevenS. Estimating the Implicit Price of Convenience: A Hedonic Analysis of the US Breakfast Sausage Market. Agribusiness. 2015. 31:281-292. doi:10.1002/agr.21404.	Outcome
	Vidal, Leticia, Ares, Gastón, Giménez, Ana. Projective techniques to uncover consumer perception: Application of three methodologies to ready-to-eat salads. Food Quality and Preference. 2013. 28:1-7. doi:https://doi.org/10.1016/j.foodqual.2012.08.005.	Country
	Webb, R. Healthy eating. Canned heat. A simple broth becomes a delicious meal. Diabetes forecast. 2008. 61:	Study design; Publication status
175.	Wells, Pamela, Dunn-Jensen, LindaM, Yang, Inae. But I Can't Eat That: Should Babcock Ice Cream Change its Ingredients?. Journal of Critical Incidents. 2019. 12:23-26.	Outcome; Study design
176.	Wetherill, MS, Williams, MB, Taniguchi, T, Salvatore, AL, Jacob, T, Cannady, T, Grammar, M, Standridge, J, Fox, J, Spiegel, J, Blue Bird Jernigan, V. A Nutrition Environment Measure to Assess Tribal Convenience Stores: The THRIVE Study. Health Promotion Practice. 2020. 21:410-420. doi:10.1177/1524839918800968.	Outcome
177.	Wilde, P, Ismail, M, Ver Ploeg, M. The Quality of the Food Retail Environment When Consumers May Be Mobile. Applied Economic Perspectives and Policy. 2021. 43:701-715. doi:10.1002/aepp.13147.	Outcome
	Williams, BM, O'Neil, CE, Keast, DR, Cho, S, Nicklas, TA. Ready-to-Eat Cereal Breakfasts Are Associated with Improved Nutrient Intake and Dietary Adequacy but Not Body Mass Index in Black Adolescents. American Journal of Lifestyle Medicine. 2009. 3:500-508. doi:10.1177/1559827609342063.	Data date range
179.	Williams, MB, Wang, W, Taniguchi, T, Salvatore, AL, Groover, WK, Wetherill, M, Love, C, Cannady, T, Grammar, M, Standridge, J, Fox, J, Jernigan, VBB. Impact of a Healthy Retail Intervention on Fruits and Vegetables and Total Sales in Tribally Owned Convenience Stores: Findings From the THRIVE Study. Health Promotion Practice. 2020. doi:10.1177/1524839920953122.	Outcome
180.	Wilson, NLW, Just, DR, Swigert, J, Wansink, B. Food pantry selection solutions: A randomized controlled trial in client-choice food pantries to nudge clients to targeted foods. Journal of Public Health (United Kingdom). 2017. 39:366-372. doi:10.1093/pubmed/fdw043.	Outcome
181.	Wolf, RL, Lepore, SJ, Vandergrift, JL, Wetmore-Arkader, L, McGinty, E, Pietrzak, G, Yaroch, AL. Knowledge, Barriers, and Stage of Change as Correlates of Fruit and Vegetable Consumption among Urban and Mostly Immigrant Black Men. Journal of the American Dietetic Association. 2008. 108:1315-1322. doi:10.1016/j.jada.2008.05.011.	Outcome

	Citation	Reason for exclusion
182.	Yan, D, Sengupta, J, Wyer Jr, RS. Package size and perceived quality: The intervening role	Country
	of unit price perceptions. Journal of Consumer Psychology. 2014. 24:4-17.	
	doi:10.1016/j.jcps.2013.08.001.	
183.	Yi, Na-Young, Choi, Bo-Ram, Chang, Hye-Ja. Opinion of commercialization of ready-to-eat	Country
	Korean foods by food-related lifestyle segments in Koreans and non-Koreans. Journal of the	
	Korean Society of Food Science and Nutrition. 2016. 45:602-612.	
184.	Yoon, Sungeun, Gao, Zhifeng, House, LisaA. Analysis of Healthy and Convenient Food:	Publication status
	The Example of Meal Kit Delivery Services. 2019. doi:10.22004/ag.econ.290854.	
185.	Zarychta, K, Banik, A, Kulis, E, Boberska, M, Radtke, T, Chan, CKY, Lobczowska, K,	Outcome; Country
	Luszczynska, A. Do Parent-Child Dyads with Excessive Body Mass Differ from Dyads with	
	Normal Body Mass in Perceptions of Obesogenic Environment?. Nutrients. 2020.	
	12:doi:10.3390/nu12072149.	
186.	Zeballos, E, Mancino, L, Lin, BH. Does how you pay influence the share of healthy items	Outcome
	that you Buy? Assessing differences in nutritional quality of food purchases by payment type.	
	Food Policy. 2020. 92:doi:10.1016/j.foodpol.2020.101886.	
187.	Zhen, C, Finkelstein, EA, Karns, SA, Leibtag, E, Zhang, C. Scanner Data-Based Panel	Outcome
	Price Indexes. Am J Agric Econ. 2019. 101:311-329. doi:10.1093/ajae/aay032.	
188.	Zheng, Yuqing, Dong, Diansheng, Burney, Shaheer, Kaiser, HarryM. Eat at Home or Away	Intervention/Exposure
	from Home? The Role of Grocery and Restaurant Food Sales Taxes. 2019.	
	44:doi:10.22004/ag.econ.281315.	
189.	Zhu, C, Lopez, RA, Liu, X. Information Cost and Consumer Choices of Healthy Foods.	Intervention/Exposure
	American Journal of Agricultural Economics. 2016. 98:41-53. doi:10.1093/ajae/aav057.	
190.	Zhylye vs.kyy, O, Jensen, HH, Garasky, SB, Cutrona, CE, Gibbons, FX. Effects of family,	Outcome; Data date
	friends, and relative prices on fruit and vegetable consumption by African Americans. Southern	range
	Economic Journal. 2013. 80:226-251. doi:10.4284/0038-4038-2011.277.	